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ABSTRACT

The aim of this dissertation is to address the topic of distinguishing very low mass stars

from brown dwarfs through observational means. To that end, we seek to better charac-

terize both populations and establish mechanisms that facilitate establishing an individual

object’s membership in either the very low mass star or the brown dwarf populations. The

dissertation is composed of three separate observational studies.

In the first study we report on our analysis of HST/NICMOS snapshot high resolution

images of 255 stars in 201 systems within ∼10 parsecs of the Sun. We establish magnitude

and separation limits for which companions can be ruled out for each star in the sample, and

then perform a comprehensive sensitivity and completeness analysis for the subsample of 138



M dwarfs in 126 systems. We calculate a multiplicity fraction of 0.0+3.5
−0.0% for L companions

to M dwarfs in the separation range of 5 to 70 AU, and 2.3+5.0
−0.7% for L and T companions to

M dwarfs in the separation range of 10 to 70 AU. Considering these results and results from

several other studies, we argue that the so-called “brown dwarf desert” extends to binary

systems with low mass primaries and is largely independent of primary mass, mass ratio,

and separation.

In the second study we construct a Hertzsprung-Russell diagram for the stellar/substellar

boundary based on a sample of 63 objects ranging in spectral type from M6V to L4. We

report new VRI photometry for 63 objects and new trigonometric parallaxes for 37 objects.

We employ a novel SED fitting algorithm to determine effective temperatures, bolometric

luminosities, and radii. We find evidence for the local minimum in the radius−temperature

and radius−luminosity trends that may indicate the end of the stellar main sequence and the

start of the brown dwarf sequence at Teff ∼ 2075K, log(L/L⊙) ∼ −3.9, and (R/R⊙) ∼ 0.086.

The third study is a pilot study for future work and part of a long term search for astro-

metric binaries that have the potential to yield dynamical masses. We report the discovery

of five new multiple systems and discuss their potential for determining dynamical masses:

LHS 2071AB, GJ 1215 ABC, LTT 7434 AB, LHS 501 AC, and LHS 3738 AB.

INDEX WORDS: Astronomy, Binaries: close, Brown dwarfs, Galactic structure,
Hertzsprung-Russell and C-M diagrams, Infrared: stars, Parallaxes,
Solar neighborhood, Stars: fundamental parameters, Stars: low-mass,
Stars: statistics
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VLM Very Low Mass. A term used in referring to stars whose masses are

near the end of the stellar main sequence. Usually applied to spectral types M6V and

later.

VLT Very Large Telescope(s). Four 8.2m telescopes located on Cerro Paranal,

Chile, and operated by the European Southern Observatory.

WISE Wide-field Infrared Survey Explorer. A satellite that mapped the en-

tire sky providing mid-infrared photometry in four bands ranging from 3.4 to 22µm.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The overarching theme of this dissertation is the study of the stellar/substellar boundary

in the context of the stellar population of the solar neighborhood, defined for this purpose

as the stellar and substellar objects within 25 pc of the Sun. We know that most of the

stars in the Galaxy are smaller than the Sun and that stars comprising the least luminous M

spectral class account for >70% of the stars in the solar neighborhood (Henry et al. 2006).

However, where the end of the stellar main sequence lies with respect to mass, luminosity,

spectral type, and effective temperature is a question that has thus far been addressed by

theoretical models of stellar evolution, but has been only loosely constrained by observations.

Theory predicts that objects with masses less than ∼0.075M⊙ lack the interior temperature

and pressure necessary to ignite the fusion of hydrogen (e.g., Burrows et al. 1993, 1997;

Baraffe et al. 1998). These substellar objects are the brown dwarfs, which look very much

like their stellar cousins during their youth, but enter a constant cooling curve rather than the

main sequence where true stars reside in the Hertsprung-Russell (HR) diagram. Despite the

sophistication of stellar and substellar structure and evolution models (e.g., Burrows et al.

1997; Baraffe et al. 1998; Chabrier et al. 2000; Baraffe et al. 2003), distinguishing a Very Low

Mass (VLM) star from a high mass brown dwarf through observations is still challenging but

made easier by the studies described in this dissertation.

The complication stems from the fact that brown dwarfs shine much like stars during

their early lives mostly due to to release of gravitational energy before each object cools
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to temperatures that are distinctly substellar, with the precise cooling rate depending on

both mass and metallicity. Objects belonging to the late M and early L spectral classes are

therefore thought to comprise a mixture of VLM stars and brown dwarfs of different ages

and masses.

1.1 A Basic Overview of What is a star and What is a Brown Dwarf

Several aspects of the physics of stars and brown dwarfs are discussed throughout this dis-

sertation. Section 5.1.1 discusses possible ways of distinguishing the two classes of objects in

detail. A brief discussion of the aspects most relevant to understanding the nature of these

distinct categories is given here to motivate the subject.

The early stellar formation process can essentially be described as localized contraction

of gas and dust inside a giant molecular cloud (e.g. Shu et al. 1987; Bate 2009, 2011). The

process is a positive feedback loop in the sense that initial heterogeneities in the cloud’s

gravitational potential serve as sink points for contraction, which in turn increase the grav-

itational pull of the region in question on the surrounding gas. If at some point during

the contraction process the resulting macroscopic body of condensed matter achieves the

core temperature and pressure necessary for the fusion of light hydrogen (i.e., hydrogen-1,

a single proton) and hydrostatic equilibrium is achieved between the inward force of gravity

and the outward thermal pressure caused as a result of fusion, a star is born. Hydrostatic

equilibrium is then maintained so long as hydrogen-1 is available for fusion, and the star

enters a prolonged period of stability during which its characteristics change little, known
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as the main sequence stage.

If for some reason the accretion process is stopped before the proto-stellar object has

gained enough mass to ignite the sustainable core fusion of hydrogen-1, a substellar brown

dwarf is born. Several mechanisms have been proposed for the cessation of accretion before

the stellar minimum mass is reached, and some of those mechanisms are explored in §4.6.2.

Because both stars and brown dwarfs have heat of formation and deuterium burning as the

primary sources of luminosity during the first few million years of their lives, the two classes

of objects largely resemble each other from the observational perspective (Burrows et al.

1997; Baraffe et al. 1998, 2002). After ∼1 Gyr the difference in luminosity between VLM

stars and high mass brown dwarfs becomes more pronounced. However, because the ages

of astronomical bodies can in most cases be only poorly constrained, and because it is

often difficult to infer the observable photospheric properties arising from a given bolometric

luminosity, there may still be substantial uncertainty in characterizing the stellar or substellar

nature of a given object. Traditionally, the late M dwarfs are thought to consist of main

sequence age VLM stars as well as young brown dwarfs, whereas the early to mid L dwarfs

are thought to comprise a mixture of VLM stars, young and low mass brown dwarfs, as well

as high mass and older (few Gyr) brown dwarfs (Kirkpatrick 2005). The T and Y spectral

classes are thought to be comprised exclusively of substellar objects. In all cases, brown

dwarfs enter a cooling curve that makes them evolve through these cool spectral classes on a

time scale of billions of years. The effect of continuous cooling is that whereas stars follow a

Mass−Luminosity Relation (MLR) with metallicity and magnetism playing only secondary
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roles, luminosity is also a function of age for brown dwarfs, therefore forming a complex

Mass−Luminosity−Age Relation (MLAR).

1.2 The M, L, T, and Y Spectral Classes

The work to be described in this dissertation is observational in its nature. It is therefore

important to describe the basics of what VLM stars and brown dwarfs look like to an

astronomer without regard to the incompletely understood underlying theory. The MK

spectral classification system is well suited for this end in the sense that objects are classified

solely with regard to the appearance of their spectra, so as to form a sequence of continuously

changing spectral types. Each class is divided into usually ten subtypes, with 0 denoting the

hottest subtype and 9 denoting the coolest. Hotter spectral types and subtypes are referred

to as “early” types relative to cooler, “late” types. While the work presented here does not

have an emphasis on spectroscopy, the prevalence of the spectral classification system in this

field of study makes a brief review of its cooler classes necessary.

The M spectral class constitutes the coolest of the seven original spectral classes (O,

B, A, F, G, K, M), with effective temperatures in the range of ∼3800K−2500K. M dwarf

spectra are characterized mainly by the presence of absorption bands due to oxide molecules

such as TiO and VO, with the latter becoming more prominent in the cooler subtypes. The

blackbody continuum present in earlier spectral types is not easily distinguished in M dwarfs

due to heavy absorption by a wide array of chemical species, creating the phenomenon of

“line blanketing” and making the interpretation of the underlying physics a complex task.



5

More recently, three additional spectral types were added to the MK system to ac-

commodate observations of objects even cooler than the M dwarfs. The L spectral class

(Kirkpatrick et al. 1999) is characterized by the gradual disappearance of spectral signa-

tures due to metal oxides (e.g., TiO, VO), the strengthening of absorption features due to

metal hydrides, and absorption due to neutral alkali metals. L dwarfs range in effective

temperature from ∼2500K−1500K. The T spectral class (Burgasser et al. 2003a) denotes

objects where absorption by CH4 and H2O dominate the overall morphology of the spectra.

Photometrically, the late Ls and early Ts are characterized by a strong shift towards bluer

infrared colors in a spectral range where effective temperature changes little (Figure 3.5)

This complex “L-T transition” (e.g., Leggett et al. 2005) is thought to correspond to the

breakup and eventual collapse of dust clouds that provide uniform coverage in the earlier

L dwarfs. The lack of a thick dust coverage then allows flux from deeper and hotter layers

to emerge. T dwarfs range in effective temperature from ∼1500K−500K. Very recently, the

first objects belonging to the still cooler Y tentative spectral class have been characterized

(Cushing et al. 2011) and there is ongoing work aimed at understanding these objects.

1.3 Motivation

Aside from being a problem of fundamental importance in stellar astrophysics, distinguishing

stars from brown dwarfs has practical implications for many fields of astronomy. Whereas

a VLM star is expected to stay on the main sequence for a time longer than the current

age of the Universe, brown dwarfs gradually cool with time. Just where in the luminosity
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and temperature sequence the dividing line between stars and brown dwarfs is found has

implications for determining the mass-luminosity ratio of the Galaxy and of the Universe.

The problem is also of fundamental importance in the search for life in the Universe. Due

to their long lifetimes and low ionizing fluxes, VLM stars are thought to be good hosts to

habitable planets. On the other hand, the fact that a brown dwarf cools down in a time

scale comparable to the potential time scale of biological evolution poses severe challenges

to the idea of life evolving in a brown dwarf system. In practical terms for current exoplanet

searches, the radial velocity, transiting, and astrometric signatures of a planet are all easier

to detect around VLM stars than in systems with more massive stars so long as the faint

star is not so faint as to limit the necessary signal to noise for the observations. Further, a

transiting planet around a VLM star has a greater likelihood of being in the habitable zone

when compared to transits around hotter and more massive stars. Determining the boundary

between stars and brown dwarfs is therefore of importance to planet hunting surveys because

it may indicate which spectral type marks the boundary between a good candidate and a

poor candidate for habitability.

1.4 Three Interconnected Studies

This dissertation consists of three distinct observational studies. The first study, called

the HST/NICMOS Multiplicity of M Dwarfs study, establishes the frequency of substellar

companions to VLM stars, and provides context for testing different stellar and substellar

formation scenarios. It provides constraints on our ability to study substellar objects through
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targeted searches for stellar/substellar binary systems, where the properties of the substellar

component can be partially inferred from the better understood stellar component.

The second and largest of the three studies, called the HLIMIT Survey, is a comprehensive

effort to establish the morphology of the HR diagram at the stellar/substellar boundary. By

combining astrometric and photometric observations with the latest available atmospheric

models, the HLIMIT Survey establishes the radii, luminosities, and effective temperatures

for a sequence of 62 objects on either side of the stellar/substellar boundary. The HLIMIT

Survey probes the luminosity, effective temperature, and radius corresponding to the stel-

lar/substellar boundary for the solar neighborhood population by detecting the local mini-

mum in the luminosity−radius and temperature−radius trends. These local minima indicate

the changes in the internal physics of objects from thermal pressure support to partial elec-

tron degeneracy, thus signaling the end of the stellar main sequence and the start of the

brown dwarf cooling curve.

The third study is a pilot effort called the Gemini-AO Search for Dynamical Masses and

is part of a longer term study to resolve VLM binary systems that have the potential to yield

dynamical masses for individual components and determine their observational properties.

It focused mainly on targets whose multiplicity was originally discovered due to astrometric

perturbations in the parallax solution. We identify five newly discovered binaries and provide

an overview of the observations and the science potential of this ongoing work.
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CHAPTER 2

History and Overview of the Field

This chapter aims to give the reader a brief overview of the field of very low mass stars and

brown dwarfs. The discussion is organized both around chronological and topical lines. It is

meant to serve as background for the work to be described in subsequent chapters and is by

no means a complete treatment. The reader who wishes a more in depth treatment may refer

to the several good review articles on the subject, amongst which are: Chabrier & Baraffe

(2000); Burrows et al. (2001); Chabrier et al. (2005); Kirkpatrick (2005); Burgasser et al.

(2007); Chabrier et al. (2009); Luhman (2012); Duchêne & Kraus (2013), and Torres (2013).

2.1 Postulation and Early Searches

The existence of the substellar objects we now call brown dwarfs, as well as the idea that

there exists a mass limit separating stars from brown dwarfs on physical grounds were first

proposed independently by Kumar (1963) and by Hayashi & Nakano (1963). These early

studies examined pre-main sequence evolution, and demonstrated that for objects below a

certain mass, the gravitational contraction of a proto-stellar core could be halted by electron

degeneracy pressure before high enough temperature and pressure were achieved to ignite

the fusion of light hydrogen (H1). Kumar (1963) in particular demonstrated that the critical

mass for the onset of core degeneracy, the Hydrogen Burning Minimum Mass (HBMM), is

dependent on the chemical composition of the stellar body. He calculated that a Population

I star with a chemical composition of X = 0.62, Y = 0.35, and Z = 0.03, where X, Y , and

Z are respectively the mass fractions of H, He, and all other elements, would have HBMM
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∼ 0.07M⊙ and a radius R ∼ 0.068R⊙. For an older Population II star with X = 0.90,

Y = 0.09, and Z = 0.01 the same calculations yielded HBMM ∼ 0.09M⊙ and R ∼ 0.081R⊙.

While today’s models predict larger radii, the idea of the mass boundary between stellar and

substellar objects being close to 0.07M⊙ for Population I compositions is still thought to be

largely correct (Table 6.6). Kumar (1963) referred to the newly postulated substellar objects

as black dwarfs. The term brown dwarf was coined by Jill Tarter in 1975 as part of her Ph.D.

thesis, and reflected the fact that little was known about their colors other than the fact

that these objects, if in fact they existed, would be very dim.

After the initial theoretical postulation in 1963, observational efforts to find brown dwarfs

and to characterize the nearby VLM stellar population were hindered by their intrinsic

faintness for more than two decades. Observing prospects improved in the mid-to-late 1980s

with the introduction of the Charge-Coupled Device (CCD), and later, infrared arrays, as

alternatives to photography, which is most sensitive in blue wavelengths. Because the older

photographic sky surveys were not sensitive enough to allow for a systematic survey of the

field for brown dwarfs, early searches focused exclusively on detecting substellar companions

to known nearby stars. We now know that such searches were bound to have low success rate

due to the so-called brown dwarf desert around main sequence stars, which states that the

rate of occurrence of stellar/substellar binaries, known as the Multiplicity Fraction (MuF),

is on the order of only ∼2%, regardless of mass ratio or the separation being probed (§ 4.4).

Despite the low success rate of companion searches, interesting objects were found, and

these objects are now the prototypes upon which substellar classification is based. The first of
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these objects, GD 165B, was discovered as an extremely red companion to the white dwarf

GD 165 in 1988 (Becklin & Zuckerman 1988). Follow-up spectroscopy (Kirkpatrick et al.

1993) revealed a spectrum distinct from those of known M dwarfs, and yet lacking the

CH4 absorption bands thought to be the hallmark of brown dwarf atmospheres. While the

substellar nature of GD 165B was not clear, it was clear that its atmospheric properties did

not conform to any known spectral class (§ 1.2). Today GD 165B is considered the prototype

of the L spectral class, and is classified as an L4 dwarf (Kirkpatrick 2005). The discovery of

GD 165B was followed by the discovery of GJ 229B in 1995 by a coronagraphic companion

search (Nakajima et al. 1995). Unlike GD 165B, GJ 229B has clear spectrophotometric

signatures of CH4. GJ 229B has spectral type T6, and is the prototype of the T spectral

class.

2.2 Large Sky Surveys

The number of known L and T dwarfs quickly grew starting at the turn of the century

due to the advent of large digital sky surveys. Most notably, the Two Micron All Sky

Survey (2MASS) in the near infrared (Skrutskie et al. 2006) and the Sloan Digital Sky Survey

(SDSS) in the optical (York et al. 2000) identified several hundred VLM stars and brown

dwarfs that were later confirmed through spectroscopic observations (e.g Kirkpatrick et al.

1999, 2000; Burgasser et al. 2002; Geballe et al. 2002; Hawley et al. 2002; Cruz et al. 2003;

Burgasser et al. 2004; Knapp et al. 2004). The European Deep Near Infrared Survey of the

southern sky (DeNIS) produced results similar to 2MASS in the southern sky, but also
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explored the far red optical I band. Data mining of these large sky surveys is a continuing

effort, and has thus far yielded the vast majority of all known L and T dwarfs. As of

November 6, 2012, 918 L dwarfs and 355 T dwarfs were listed at dwarfarchives.org, an

online compilation whose goal is to maintain a list of all known L, T, and Y dwarfs.

2.3 Theoretical Developments

In parallel to the observational work, the theory of VLM stars and brown dwarfs also de-

veloped rapidly in the late 1990s and early 2000s. Most of the theoretical work was carried

out by two distinct research groups, both of which sought to create comprehensive structure

and evolution as well as atmospheric models. One group was led by Adam Burrows at the

University of Arizona, and became known as the Tucson group. The second group was led by

Isabelle Baraffe and France Allard at École Normale Supérieure de Lyon, and became known

as the Lyon group. In 1993 the Tucson group was the first to publish detailed structure and

evolution models for VLM stars and high mass brown dwarfs, with a particular emphasis on

identifying the set of parameters producing the HBMM (Burrows et al. 1993). That work

found HBMM = 0.0767M⊙ for solar metallicity and HBMM = 0.094M⊙ in the extreme case

of zero metallicity1. The work was extended four years later (Burrows et al. 1997) to include

evolutionary tracks ranging from VLM stars to planetary mass objects in an unified treatment

based on a more sophisticated treatment of atmospheric opacity. The results reported in

Burrows et al. (1997), which include the previous results from Burrows et al. (1993) became

1The detailed predictions of several models regarding the hydrogen burning limit are discussed in §6.7.3
and summarized in Table 6.6.
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Figure 2.1 The Burrows evolutionary tracks for low mass stars, brown dwarfs, and planetary mass objects (Burrows et al.
1997). The difference in luminosity between stars and brown dwarfs is more pronounced for t > 1 Gyr than at earlier ages.
Stars and brown dwarfs show an early period of stability due to deuterium burning. After deuterium runs out, stars eventually
stabilize again in the main sequence, whereas brown dwarfs enter a continuous cooling curve. Image courtesy of Adam Burrows.

known as the “Burrows models”, or the “Tucson models”, and are still widely referenced

today. Figure 2.1 is the classic diagram of the Burrows models, showing evolutionary tracks

for VLM stars, brown dwarfs, and planetary mass objects.

In the meantime, across the Atlantic the Lyon group was also developing their evolu-

tionary models, but taking a different approach to the problem. All interior structure and

evolution models must rely on an atmospheric model that places a boundary condition at
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the surface of the object in question. Whereas the Tucson group developed atmospheric

models as an integral part of their interior structure and evolution models, the Lyon group

developed their atmospheric models independently, and then later incorporated them into

evolutionary models. The approach taken by the Lyon group has led to a greater diversity

of models, with each of them working best in a particular temperature regime. In particular,

the early models of Baraffe et al. (1998) were soon after developed into the “DUSTY” version

(Chabrier et al. 2000) and the “COND” version (Baraffe et al. 2003). These two versions

are different in their treatments of atmospheric dust formation, which becomes relevant at

temperatures . 2600 K. In the “DUSTY” scenario dust grains are left in the atmosphere and

provide a significant source of additional opacity, whereas in the “COND” scenario the grains

condense and settle below the photosphere, and in so doing also deplete the atmosphere of

metals. While neither of these two extreme cases has been shown to match observations for a

wide range of temperatures, the “DUSTY” models appear better suited in replicating early

to mid L dwarf atmospheres, whereas the “COND” models do a better job in replicating T

dwarf observations. Modeling the transition from L dwarfs to T dwarfs remains problematic.

Significant progress was made by the Lyon group recently with the publication of the

BT-Settl atmospheric models (Allard et al. 2012, 2013). The BT-Settl models use a non-

equilibrium inter-phase approach to treating the problem of grain formation and sedimen-

tation in cool atmospheres. The models provide a grid of synthetic spectra with effective

temperatures ranging from solar (∼5800 K) down to planetary temperatures of a few hun-

dred Kelvins. Variations in metallicity and gravity make the grid three-dimensional. These
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models have greatly facilitated the determination of fundamental atmospheric parameters by

comparison of observed spectra and photometry to synthetic spectra. The BT-Settl results

are particularly relevant in the modeling of L dwarf atmospheres, where the treatment of

grain sedimentation requires sophisticated modeling. §§5.5 and 5.6 describe how the BT-

Settl spectra were used to determine fundamental atmospheric parameters in the context of

this dissertation. The research community that studies low mass stars and brown dwarfs

eagerly awaits the publication of new evolutionary models that incorporate BT-Settl as a

boundary condition2.

2.4 The Diversity of M, L, and T dwarfs

In this section we review discoveries over the past ∼10 years that highlight the current

breadth and scope of the field from the observational perspective. This treatment is brief

and not meant as all-inclusive.

Surface Gravity. Surface gravity is an important consideration in the treatment of

VLM stars and brown dwarfs due to their small radii and compact nature. While surface

gravity and its diagnostic features in higher mass stars are useful for distinguishing main

sequence stars from evolved giant stars, giant L and T dwarfs are generally not thought

to exist. Variations in surface gravity occur mainly as a result of early contraction, with

low gravity being associated with youth. Gravity considerations are particularly relevant

for L dwarfs, where depending on mass, age, and metallicity, a given spectral subtype may

2The ongoing development of evolutionary models incorporating BT-Settl was announced by F. Allard in
June of 2012 during Cool Stars 17 in Barcelona.
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correspond to a stellar object, an intermediate age high mass brown dwarf, a young low mass

brown dwarf, or even a very young planetary mass object.

The use of gravity sensitive spectral features for identifying youth in brown dwarfs was

first demonstrated by Mart́ın et al. (1999) and emphasized by McGovern et al. (2004), who

analyzed the infrared and optical spectra of the young brown dwarfs G196-3B, KPNO Tau

4, σ Ori 47, and σ Ori 51. They note that the widths of absorption lines due to neutral

alkali elements, in particular K, Na, Cs, Rb, as well as the strengths of absorption bands

due to VO, TiO, CaH, and other metal hydrides can be used as relative measures of surface

gravity, and hence youth. Because of the important role of surface gravity in determining

the nature of L dwarfs, Cruz et al. (2009) have proposed a two-dimensional spectral typing

sequence from L0 to L5 where the suffixes α, β, and γ indicate normal gravity, low gravity,

and very low gravity, respectively. The L0 to L5 spectral range is extremely diverse as far as

the nature of its members is concerned, and a two-dimensional classification scheme such as

the ones proposed by Kirkpatrick (2005), Cruz et al. (2009), and Allers & Liu (2013) would

be of significant value in linking spectral classification to underlying physics. Unfortunately,

this scheme has not been universally adopted. Comparison to model atmospheres (e.g.

Allard et al. 2013) indicates that “normal” L dwarfs have surface gravities log g ∼ 5.0

(where g is the acceleration due to gravity in cgs units), whereas very low gravity (i.e.,

young) objects may have surface gravities as low as log g ∼ 3.5.

Metallicity. Several metal-poor L subdwarfs have been identified to date (e.g., Burgasser et al.

2003b, 2008b, 2009; Cushing et al. 2009; Sivarani et al. 2009; Lodieu et al. 2010). These ob-
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jects appear to be analogous to subdwarfs of earlier spectral classes, where low metallicity

is usually observed along with kinematics indicative of an older population. As an example,

2MASS J0616-6407, an sdL5 (Cushing et al. 2009), has spectroscopic signatures of low metal

content and an impressive radial velocity of 454 ± 15 km s−1. There have also been sugges-

tions of particularly metal-rich L dwarfs (e.g., Looper et al. 2008), in which the spectroscopic

effects of high metallicity may mimic the effects of low surface gravity.

The Blue L Dwarfs. Several L dwarfs have unusually blue near infrared spectra, and

comprise a distinct group known as the blue L dwarfs (e.g., Cruz et al. 2007; Burgasser et al.

2008a; Bowler et al. 2010; Schmidt et al. 2010; Cushing et al. 2010). The blue excess in the

infrared is most likely due to a thinner than usual cloud layer, which is likely the result of

low metallicity, high surface gravity causing high sedimentation rate, high vertical mixing in

the atmosphere, or a combination of these factors (Cushing et al. 2010). The blue L dwarfs

highlight how grain formation and sedimentation produce complex atmospheric physics, and

how the effects of these basic parameters are manifested in interconnected ways.

Multiplicity. Multiplicity across the stellar/substellar boundary is one of the main

topics of this thesis. In keeping with this section’s goal of highlighting the diversity of VLM

stars and brown dwarfs, an overview of the topic is presented here. A detailed discussion

of topics such as the “brown dwarf desert” including presentation of new results, is found

in Chapter 4. The results discussed there can be summarized by stating that binaries in

which the primary component is of spectral type M or earlier and the secondary component

is an L or a T dwarf are infrequent, with an occurrence rate of only a few percent. This
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result is largely invariant across different stellar ages, mass ratios, and separations. In the

following discussion we also include the M dwarfs because many multiplicity studies have

focused simply on low mass objects, which includes the M, L, and T dwarfs.

Early infrared speckle studies established the multiplicity of stellar companions around

M dwarfs to be 32±11% (Henry & McCarthy 1990; Henry 1991). Subsequent work by

Fischer & Marcy (1992) indicated a slightly higher multiplicity rate of 42±9%. In a synthesis

of several multiplicity studies (Reid & Gizis 1997; Oppenheimer et al. 2001; Hinz et al. 2002;

Reid et al. 2003; Delfosse et al. 2004), Burgasser et al. (2007) derive an overall Multiplicity

Fraction (MuF) of 27+5
−4% for M dwarfs. The same study finds that the observed MuF for

VLM systems with primaries of spectral type M6V or later is ∼20%; however, they note

that due to to selection effects the real MuF is likely somewhat lower. Taking the results

of several studies into consideration, Burgasser et al. (2007) note that the MuF for VLM

stars and brown dwarfs could range from as low as 10% to as high as 30%, and that the

binary population is characterized by closely separated and nearly equal mass systems. In

particular, they note that 93% of the systems have separation <20 AU, and 77% have mass

ratios > 0.8, where 1.0 denotes an equal mass binary.

In addition to the general population trends described above, there are also noteworthy

subsets of very widely separated binaries and very widely separated hierarchical higher order

multiples. The contrast between these subsets and the main binary population described

above may shed light into brown dwarf formation scenarios (§4.6.2). As an example of one

study, Faherty et al. (2010) find that widely separated binaries with separations as large as
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∼25000 AU may survive dynamic interactions in the young cluster environment and form

stable field-aged systems. These systems have binding energies that are close to the limit

for bound systems (Close et al. 2007). Several studies also note a disproportionate number

of systems where two closely separated, nearly equal mass brown dwarfs are in a wide hi-

erarchical orbit around a more massive main sequence star (e.g., Golimowski et al. 2004a;

Burgasser et al. 2005; Caballero 2007; Law et al. 2010; Faherty et al. 2010). In particular,

Faherty et al. (2010) note that the ratio of triple systems to binary systems is 2.4 times

higher for VLM objects than for the general field population. It has also been noted that

the reverse configuration, where the central star is a close binary and those two components

are orbited by a single wide separation low mass companion, is also common (Allen et al.

2012). That study has suggested that formation scenarios based on conservation of angu-

lar momentum where angular momentum is transferred from the binary component to the

isolated wide component, therefore decreasing the separation of the binary component, are

likely responsible for the high occurrence of triple systems.

Finally, very close binaries have also been detected via spectroscopic observations.

Shkolnik et al. (2010) report an overall spectroscopic binary fraction of 16% for M dwarfs.

More specifically, Blake et al. (2010) report the late M and L dwarf binary fraction to be

2.5+8.6
−1.6% for separations smaller than 1.0 AU and Clark et al. (2012) report the binary frac-

tion for M dwarfs with separations smaller than 0.4 AU to be 3% to 4%.

Galactic Kinematics. Studies of the Galactic kinematics of L and T dwarfs have

been primarily concerned with determining the sample’s age based on its Galactic velocity
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distribution. The method relies on the idea that stars are born in a cluster environment

with a small velocity dispersion, which then gradually increases as stars travel through the

Galaxy and undergo dynamical interactions with other objects. The age dependence of the

velocity dispersion can be modeled as a power law of the form tα with α ∼ 0.33 for the solar

neighborhood (Binney et al. 2000). Because the calculation of three-dimensional Galactic

velocities must rely on known tangential velocities from trigonometric parallax observations

as well as spectroscopic radial velocities, only a small subset of the known L and T dwarfs can

be completely characterized at this time. Many more have been studied in a more restricted

sense through the determination of proper motion only (Schmidt et al. 2007; Faherty et al.

2009).

There have been conflicting results in the literature regarding age determination through

kinematic means. Zapatero Osorio et al. (2007) examined the space motions of 21 L and T

dwarfs and concluded that the kinematics of these objects most closely resemble those of

hot F type stars. From the comparison, they derive ages ranging from 0.5−4 Gyr for the

substellar population, which is lower than the accepted age for low mass stars in the solar

neighborhood. In contrast, subsequent larger studies have found no clear evidence that the

low mass stellar population and the VLM and substellar populations are characterized by

different ages. Schmidt et al. (2010) determined the three-dimensional Galactic velocities

of 306 L dwarfs and concluded that while the population is best characterized by a mix of

a younger component and an older component, the overall characteristics are no different

than those noted for M dwarfs. Schmidt et al. (2010) find the mean tangential velocity to
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be Vtan = 28 km s−1 with a dispersion of σtan = 25 km s−1. Seifahrt et al. (2010) examined

a sample of 43 L dwarfs with three-dimensional velocities and derived an age of ∼3 Gyr

for the L dwarfs, which is comparable to the accepted age for late M dwarfs in the solar

neighborhood (Reiners & Basri 2009).

As pointed out by Seifahrt et al. (2010), the derivation of an age for the L dwarf popu-

lation that is comparable to the age of the M dwarf population, as in Seifahrt et al. (2010)

and Schmidt et al. (2010), poses problems for the interpretation of substellar evolution.

Even without detailed knowledge of the spectral sub-type corresponding to the HBMM, it

is accepted that the L dwarf population constitutes a mix of stellar and substellar objects.

Because L type brown dwarfs comprise the hotter component of a permanently cooling pop-

ulation, they should be on average younger than the stellar population, which does not cool

with time. Seifahrt et al. (2010) speculate that perhaps their observed sample is not ade-

quate for statistical treatment due to the non-Gaussian nature of their velocity dispersion, or

that perhaps the initial velocity dispersion of substellar objects is higher than that of stellar

objects. The latter consideration would mean that a different zero point velocity dispersion

is necessary when estimating the age of brown dwarfs, and is consistent with the ejection

scenario of brown dwarf formation (§4.6.2).

2.5 Trigonometric Parallaxes

The list of late M, L, T, and now Y dwarfs with trigonometric parallaxes has been steadily

growing over the last fifteen years. A compendium of all VLM stars and brown dwarfs with
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parallaxes was initially published in Dupuy & Liu (2012) and continues to be periodically

updated by T. Dupuy at

https://www.cfa.harvard.edu/∼tdupuy/plx/Database of Ultracool Parallaxes.html.

As of December 1, 2013, the list contains 411 objects with trigonometric parallaxes. An

additional 37 trigonometric parallaxes are being published in association with this disserta-

tion. There now exists a robust sample of objects with trigonometric parallaxes for statistical

purposes. A more thorough discussion of trigonometric parallaxes is reserved for §6.2.

2.6 M Dwarfs in the Solar Neighborhood

Most of the stars in the Galaxy are M dwarfs, and yet they have been somewhat neglected by

those searching the databases of large surveys, who tend to concentrate on discovering L and

T dwarfs. In addition to neglecting more than 70% of the stars in the Galaxy (Henry et al.

2006), not focusing on M dwarfs prevents a thorough understanding of the stellar formation

process and how brown dwarfs form because the ubiquity of M dwarfs must be the principal

prediction of any comprehensive theoretical formation scenario.

Over the past decade, the search for nearby M dwarfs has been carried out mostly by the

RECONS group through proper motion searches of the SuperCOSMOS Sky Survey. Subsets

of this search have concentrated on specific proper motion regimes, and now cover the entire

proper motion range for µ ≥ 0.18′′/yr. The results of these searches have been published in

several articles of The Solar Neighborhood series in the Astronomical Journal 3. The search is

sensitive to magnitudes I ∼ 19, R ∼ 20, and B ∼ 21 and newly discovered stars are denom-

3www.recons.org
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inated SuperCOSMOS RECONS (SCR) stars. The requirement that a target be detected

in all three filters effectively limits the search for the faintest M dwarfs to distances closer

than 10 pc. In addition to the SuperCOSMOS search, many other late M dwarfs discov-

ered through the 2MASS search or other sky searches were placed in the CTIOPI/RECONS

parallax program for astrometric and photometric characterization (§5.2). Because some

M dwarfs are past the SuperCOSMOS detection limit in the B band, and because we re-

quire detection in all three SuperCOSMOS bands, it is not possible to say that the census

of nearby M dwarfs is complete at this point; however we believe that any new additions

will only marginally change the population properties. The search for the “missing” nearby

M dwarf continues with the extension of RECONS work to 25 pc. M dwarf multiplicity is

also being investigated by RECONS through the REDDOT project led by Jennifer Winters,

which aims to obtain a census of all nearby M dwarfs with stellar companions.

2.7 The Luminosity Function and the Mass Function

The Luminosity Function (LF) is defined as the space density of objects as a function of

luminosity, which is usually represented by absolute magnitude or spectral type. In a similar

manner, the Mass Function (MF) expresses the space density of objects as a function of the

object’s mass. The Initial Mass Function (IMF) is defined as the rate of creation of new

objects per unit volume, without regard to the elapsed age of a population or the object’s

lifetime. For substellar objects, the LF is a convolution of the IMF and the cooling rate that

causes those objects to advance to cooler spectral types.
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Both the LF and the MF are difficult quantities to establish due to the requirement that

all objects within a certain pre-determined volume be counted. This requires reliable distance

measurements and a sky survey of enough sensitivity to detect all objects within that volume.

Further, determining the MF requires a relation between luminosity and mass, the Mass-

Luminosity Relation (MLR), because mass is not directly measurable except in the case of

close binaries. In the case of constantly cooling brown dwarfs, the MLF becomes the Mass-

Luminosity-Age Relation (MLAR). The current lack of volume-complete samples for which

all distances are established through trigonometric parallax makes a rigorous determination

of the LF and MF impossible for now. In practice, the LF can be estimated based on

photometric field surveys and spectrophotometric distance estimates. However, estimates of

the MF are still for the most part based on models of (sub)stellar structure and evolution.

The luminosity function for field VLM stars and L dwarfs within 20 pc was estimated by

Cruz et al. (2007) based on targets detected by 2MASS and follow-up spectroscopy. That

work found a space density of 4.9×10−3 pc−3 for spectral types between M7V and M9.5V

and a lower limit of 3.8×10−3 pc−3 for L dwarfs down to subtype L8. Figure 2.2 shows

the spectral type breakdown of the sample. More recently, Kirkpatrick et al. (2012) used

the results of the WISE survey and spectrophotometric distance estimates to estimate the

luminosity function of objects of all spectral types within an 8 pc radius. That study found

7 objects with spectral types between M7V and M9.5V, 3 L dwarfs, 22 T dwarfs, and 8 Y

dwarfs. Given the small number of L dwarfs within 8 pc, any statistical interpretation of

the 8 pc sample must be made with caution.
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Figure 2.2 The 20 pc Luminosity Function of Cruz et al. (2007). Distances were obtained both through trigonometric
parallax and spectrophotometric distance estimates. The numbers are lower limits for L dwarfs.

Predictions of the MF and the resulting LF have been done based on the substellar cooling

rates predicted by models and assuming several different forms for the IMF (Burgasser 2004;

Allen et al. 2005). The results of those studies are discussed in detail in light of the results of

this dissertation in §6.7.3. Both studies predict a local minimum in the luminosity function

for early Ls, which is attributed to the onset of the brown dwarf cooling curve. For most

forms of the IMF, these studies also predict that objects with Teff < 1000 K, the T and Y

dwarfs, should outnumber the stellar objects. This prediction is contrary to the previously

mentioned WISE results, which suggest that stars outnumber brown dwarfs by about six to

one. The theoretical MF and observational results could be reconciled if the IMF is somehow

truncated or has a sharp slope somewhere between the mid M and mid L spectral types.
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CHAPTER 3

Overview of the HST/NICMOS Multiplicity Study

This chapter and Chapter 4 are based on “The Solar Neighborhood, XXVIII: The Multi-

plicity Fraction of Nearby Stars From 5 to 70 AU and the Brown Dwarf Desert Around M

Dwarfs”, by Dieterich et al. (2012). The study described there was originally conceived by

Todd Henry, David Golimowski, and John Krist in the late 1990s. The observing strategy

and target selection was done by those collaborators at that time, and is included here for

completeness. The search for faint companions in the reduced images and the statistical

analysis on the results of that search constitutes original research by the author. The cur-

rent chapter contains an introduction to the topic, a description of the observations and data

analysis, and a general description of the results. Chapter 4 contains a detailed analysis in

the context of VLM binaries and the stellar/substellar MuF.

3.1 Introduction

The Mass Function (MF), Multiplicity Fraction (MuF), and the Mass−Luminosity Relation

(MLR) are three of the most important characteristics of a stellar or substellar population.

However, all three remain poorly constrained for VLM stars. Although the lowest mass

stars, the M dwarfs, dominate the Galaxy in numbers and comprise the majority of our

stellar neighbors (Henry et al. 2006), not a single M dwarf is visible to the naked eye. Over

the last two decades, advances in observational astronomy have made a thorough study of

these faint stars possible. Empirical mass-luminosity relations (Henry & McCarthy 1993;

Henry et al. 1999; Delfosse et al. 2000) have achieved a high degree of reliability for early to
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mid M dwarfs, with progress continuing for later M dwarfs at the end of the main sequence.

Large sky surveys such as 2MASS in the near infrared (Skrutskie et al. 2006) and SDSS in the

optical (York et al. 2000) (§2.2) have provided a wealth of new data for population studies,

but lack the angular resolution necessary to investigate the MuF and the Companion Mass

Function (CMF) at separations corresponding to the short periods necessary for determining

dynamical masses.

The discovery of GL 229B, the first unequivocal brown dwarf (Nakajima et al. 1995)

(§2.1), followed by hundreds of others, raised fundamental questions about our under-

standing of low mass star formation. Are VLM stars and brown dwarfs products of a

single mechanism of (sub)stellar formation applicable to a wide range of masses? Or,

do brown dwarfs constitute a fundamentally different population? What do multiplicity

properties, such as the overall multiplicity fraction and the separation distribution, tell us

about the environments in which VLM stars and brown dwarfs were born? These are some

of the fundamental questions that have only recently been addressed through a combina-

tion of sky surveys (e.g., Bochanski et al. 2010), wide separation common proper motion

searches (e.g., Allen et al. 2007; Allen & Reid 2008), high resolution multiplicity surveys

(e.g., Reid & Gizis 1997; Close et al. 2003; Gizis et al. 2003; Lowrance et al. 2005; Reid et al.

2008; Metchev & Hillenbrand 2009) and the establishment of trigonometric parallaxes for a

large sample of objects (e.g., Dahn et al. 2002; Henry et al. 2006, §6.2).

Thorough characterization of any stellar population requires the study of a volume limited

sample. In an effort to better understand these properties, collaborators Henry, Golimowski,
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and Krist conducted an HST/NICMOS snapshot program imaging 255 objects in 201 star

systems with trigonometric parallaxes placing them within ∼10 pc of the Sun (Table 3.1).

The survey used the technique of methane imaging (Rosenthal et al. 1996; Tinney et al.

2005) to clearly distinguish cool brown dwarf companions. In 2004 we reported the detection

of four M dwarf companions and one binary L dwarf in a triple system (Golimowski et al.

2004a). With small infrared contrasts ranging from ∼0 magnitudes (GJ 1001BC) to 4.5

magnitudes (GJ 84AB), the companions we reported in 2004 were relatively bright. We

have since carried out a deeper search of the data, establishing formal sensitivity limits for

the detection of companions in the field of each primary target and extending the limiting

magnitude differences routinely to 11 at separations of 3.0′′, 8 at 1.0′′, 4 at 0.4′′, and 2 at 0.2′′

(§3.4). Having completed the deeper search of the data with no further detections, I now

report on the magnitude and separation limits to which we can rule out companions for each

object in our sample. What the lack of additional brown dwarf detections tells us about the

multiplicity fraction of systems with VLM secondaries in these mass and separation regimes

is discussed in Chapter 4.

3.2 General Characteristics of the Sample

The target list was designed to provide a sample that is representative of the solar neigh-

borhood. Because this survey was an HST snapshot program, the targets were pulled from

a large pool of selected targets in order to fill small gaps in HST’s observing schedule. The

RECONS 10 pc sample was used as a starting list for the search and allowed the HST snap-
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shot scheduling process to select a random subsample from the 10 pc sample1. In order to

be a member of the RECONS 10 pc sample, an object must have a trigonometric parallax

greater than 100 mas, with an error smaller than 10 mas. Table 3.1 summarizes several tal-

lies of the observed sample. These observations comprise 69% of the RECONS 10 pc sample

(epoch 2012.0), including main sequence stars, white dwarfs, L and T dwarfs, but excluding

extrasolar planets. Because trigonometric parallaxes for nearby stars are constantly being

updated, 17 objects in 13 systems originally included in our search are no longer members

of the 10 pc sample. We still include their data as individual stars in this paper, but exclude

them from statistical considerations in order to keep the sample volume limited. Table 3.4,

located at the end of this chapter, provides a complete list of all objects observed along with

the sensitivity to companions around each object (§3.4)

Table 3.1: Summary Tallies of HST/NICMOS Search

Sub-sample Tally
HST Visits 217
Total Targets Believed to be Single 233
Total Unresolved Known Multiples 22
Total Star Systemsa 201
Single targets within 10 pc 218
Unresolved Known Multiples within 10 pc 21
Star Systems within 10 pca 188
Single M Dwarfs within 10 pc 141
Systems with M Dwarf Primary within 10 pca 126
Single Targets beyond 10 pc 15
Unresolved Known Multiples beyond 10 pc 1
Star Systems beyond 10 pca 13

1Because all observations consisted of an identical observing sequence, the (equal) duration of each visit
did not create a selection effect.

aDenotes known physical association at any physical separation, including systems comprising multiple
fields of view.
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Figure 3.1 shows the spectral type distribution of the NICMOS snapshot sample. Out of

the 218 resolved objects within 10 pc we observed, 138, or 63%, are M dwarfs. This number

is a very close match to the M dwarf fraction in the RECONS 10 pc sample, which is 248

out of 357 objects, or 69% (epoch 2012.0). The preponderance of M dwarfs in the sample

means that even though the sample is a random representation of the solar neighborhood,

it focuses on the spectral type that is least scrutinized by Radial Velocity (RV) companion

searches and open cluster imaging searches. By studying nearby M dwarfs, which comprise

a disk rather than cluster population, the survey maps the brown dwarf desert in a largely

unexplored region.

3.3 Observations and Data Reduction

Golimowski et al. (2004a) describe technical aspects of the observations in detail. We give

a brief summary here and highlight the aspects that are most relevant in achieving the

sensitivities we later quote for each individual target.

The survey obtained direct images of each target using NICMOS Camera 2 (NIC2)

through four near infrared filters during cycles 7 (1997−1998) and 11 (2002−2003). NIC2 has

a plate scale of 0.076′′pixel−1 and a field of view of 19.5′′×19.5′′ (Viana et al. 2009; Thatte

et al. 2009)2. Targets were imaged through the F110W, F180M, F207M, and F222M filters,

centered at 1.10µm, 1.80µm, 2.07µm, and 2.22µm, respectively. Because HST observations

are not subject to atmospheric absorption, the NICMOS filters are not defined to sample

2 HST/NICMOS documentation, including the NICMOS Instrument Handbook and the NICMOS Data
Handbook, is currently available from the Space Telescope Science Institute at www.stsci.edu/hst/nicmos
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Figure 3.1 Spectral type distribution of the 239 targets within 10 pc in the HST/NICMOS sample. The sample constitutes
69% of the RECONS 10 pc sample (epoch 2012.0). 63% of the targets are M dwarfs, which is in close agreement with the M
dwarf distribution of the 10 pc sample, 69% (epoch 2012.0).

atmospheric transmission windows in the way that ground based near infrared filters are.

The resulting filter set is non-standard when compared to ground based systems, but allows

the user to construct a color scheme that is more suitable for the underlying physics being

investigated. Figure 3.2 shows the transmission curves for the selected NICMOS filters, with

the 2MASS J, H, and KS filters also plotted for comparison. The four filters used in this

survey were selected to detect the strong CH4 absorption bands observed in T dwarf spectra

at 1.7µm and 2.2µm, in effect imaging in and out of these absorption bands. Depending on



31

Figure 3.2 Transmission curves for the four NICMOS filters used in the survey. The 2MASS filters are plotted with dotted
lines for comparison. Although no individual NICMOS filter is a close match to a ground-based equivalent, together they cover
nearly the same wavelength range of ground-based near-infrared color systems.

the filter choice, there is a drastic color shift of up to three magnitudes for T dwarfs. A late

T dwarf appears blue in F110W−F180M (0.0 to −1.0, Figure 3.5(a)) whereas it is red in

F180M−F207M (1.0 to 2.0, Figure 3.5(c)). Because no background source is likely to have

such a strong color shift, T dwarfs are readily identified in this color scheme. This technique

is commonly known as methane imaging and has been used to successfully identify brown

dwarfs in photometric observations (Rosenthal et al. 1996; Tinney et al. 2005).

By centering the targets on the detector, it was possible to search for companions within a
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radius of 9.5′′, except for a small (∼1′′ in diameter) artifact due to the coronagraphic hole on

the upper left quadrant of the detector3. A few targets had large coordinate uncertainties, in

most cases due to poorly constrained high proper motions. These targets were not properly

centered in the field of view, and are specified in the notes to Table 3.4. Although some

of the primary targets are very bright (e.g., Sirius, Vega, Procyon), we did not use the

coronagraph because it would make the acquisition process too long for a snapshot program

and its peripheral position in the detector would severely limit the search radius. Placing

the primary target behind the coronagraph would also add uncertainty to the measurement

of the position angle and separation of any binary systems. Even with saturated central

targets, we could still search for companions, albeit with a lower sensitivity closer to the

central target (Table 3.4).

Two sets of exposures for each target were co-added, resulting in a total exposure time of

64 s for the F110W and F180M filters and 128 s for the F207M and F222M filters. Saturation

of bright targets and cosmic ray hits were minimized by using NICMOS’s multi-accumulate

mode, which reads the detector in a non-destructive manner at predetermined time intervals.

In the event of saturation or a cosmic ray hit, the NICMOS pipeline scales the value from

unaffected readouts so as to obtain the approximate value due to the astronomical source.

Only pixels that saturate or are hit by a cosmic ray before the first readout at 0.303 s are

lost. For targets that were bright enough to saturate during the first readout, we obtained

photometry by using Point Spread Function (PSF) fits based on the unsaturated portion of

3HST’s roll orientation during a given exposure is constrained by the need to keep the solar arrays facing
the Sun. Consequently, the position angle of the coronagraphic hole with respect to celestial north, as well
as the image’s overall orientation, varies widely among the images of our targets.
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the PSF.

Because there is no background atmospheric glow, the extended PSF of the primary

target is the dominant source of background flux obscuring any fainter objects in the field

of view. The properly scaled PSF of another star of similar spectral type and brightness

was subtracted from the PSF of each target. A detailed discussion of the PSF subtraction

process is given in Krist et al. (1998). The quality of the subtraction varied from target to

target and depends primarily on whether or not a good PSF match could be obtained. The

PSF varies with target color, telescope focus, and the position of the NICMOS cold mask

(Krist et al. 1998). It was always possible to find an isolated star whose PSF was used as

the reference for PSF subtraction. If the PSF reference had been a close binary or if it had

been contaminated by background sources, we would have noticed a physically unrealistic

negative PSF in the subtracted image. We then performed aperture photometry on the

primary target as well as any other sources in the field of view using standard IRAF routines

and the aperture corrections for encircled energy fraction listed in Table 2 of Krist et al.

(1998). To verify the validity of the aperture corrections, the photometry of the crowded

field of LHS 288 (31 sources, Figure 3.3) was performed varying the aperture from three

to six pixels (0.23′′ to 0.46′′). The photometry agreed to .0.03 magnitudes in all bands,

regardless of aperture. The final photometry was done using a six pixel aperture, except in

cases when a crowded field or a source near the edge of the field required a smaller aperture.
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Figure 3.3 Survey images for LHS 288 (M5.5V) using logarithmic scaling. The frames illustrate typical survey images
both before (a) and after (b) PSF subtraction. The ghost-like coronagraphic artifact is visible in the upper left hand corner,
particularly in the F222M images. The highly structured PSF of the primary target dominates the field before PSF subtraction.
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3.4 Determining the Sensitivity of the Search

We define the “sensitivity” of the search as the extent to which we can detect or rule out

the existence of a companion to a given star at a given separation and image contrast ∆m.

The sensitivity varies from target to target and is influenced by the overall brightness of the

primary target, the quality of the PSF subtraction, the image filter, intrinsic detector noise,

and the prominence of detector artifacts. For each image these factors interact in a complex

way, thus making it difficult to draw generalizations about instrumental sensitivity for the

survey as a whole. We have therefore devised a method to measure the sensitivity achieved

for each target at various separations, and quote individual results in Table 3.4.

Because HST is not subject to atmospheric effects, its images are inherently stable, thus

facilitating PSF modeling. We used Tiny Tim 6.3 (Krist & Hook 1997) to simulate generic

NIC2 stellar PSFs through the four filters used in the search. The properly scaled model

PSFs were inserted into the PSF subtracted images of the primary targets to test our ability

to detect companions at a range of contrasts and separations using a customized IDL code.

At sub-arcsecond separations, we inserted a single companion at separations of 0.2′′, 0.4′′,

0.6′′, and 0.8′′ and a varying range of contrasts at random position angles (Figure 3.5.1(a)).

The PSF insertion code automatically excluded the strong diffraction spikes present in well-

exposed NICMOS images at 45◦, 135◦, 225◦, and 315◦. The residual flux from the PSF

subtracted primary target was set to zero at a radius interior to the position of the artificially

inserted companion to facilitate visual inspection. At separations of 1.0′′ or greater, we

produced an image where artificial companions were arranged in a radial pattern around the
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PSF subtracted primary (Figure 3.5.1(b)). This pattern tested the sensitivity at separations

of 1.0′′, 2.0′′, 3.0′′, and 4.0′′ at contrasts typically incremented from 6 to 13 magnitudes. The

simulated images and their surface plots were then visually inspected. In both regimes, an

artificially inserted companion was considered detectable if it was visible in the simulated

image and if a surface plot around the companion indicated that the artificial PSF retained its

characteristic stellar shape, with its peak clearly above the background noise, corresponding

to a typical signal-to-noise of 3−5. Although automating the PSF recovery process (e.g.,

by using a cross-correlation algorithm) would have saved a considerable amount of time, we

were not convinced that automated methods would appropriately distinguish between real

astronomical sources and residuals of the central star’s PSF subtraction, which can at times

mimic star-like profiles.

3.5 Results

Other than the five companions reported in Golimowski et al. (2004a), which focused on

individual discoveries, no further new companions were detected during this second phase

of the search. We now report on the photometry, astrometry, and search sensitivities at-

tained during the survey. While all numerical data are presented in this section, statistical

interpretation of data concerning the M dwarfs is saved for Chapter 4.

3.5.1 Color−Magnitude Diagrams

Color−Magnitude Diagrams (CMDs), where the colors of an astronomical object in a given

photometric system are plotted against its absolute magnitude so as to map out a color
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sequence for a given observed sample, are the observational equivalent of the HR diagram .

When the trigonometric parallax to all objects plotted in a CMD is known, the CMD has

the advantage that it can be constructed from observations alone, without relying on the-

ory. We constructed color-magnitude diagrams for the twenty-four different color-magnitude

combinations from the observations through the four filters. Because the sample includes

only four certain substellar objects (GJ 1001 B and C, GJ 229B, and 2MASSI J0559191-

140448), synthetic photometry from the spectra of known L and T dwarfs was used to better

determine the form of the substellar sequence in this color space. These values were ob-

tained using flux-calibrated, near infrared spectra (Geballe et al. 2002; Knapp et al. 2004),

weighted mean trigonometric parallaxes (Golimowski et al. 2004a, and references therein),

and the NICMOS Exposure Time Calculator. Figure 3.5 shows four color-magnitude dia-

grams that are particularly well suited for mapping the stellar and substellar main sequence.

Main sequence targets and the thirteen white dwarfs in the survey are labeled with large

dots. These diagrams initially assume that any object in the field of view of a primary target

is a companion and therefore shares the primary’s trigonometric parallax. If the assumption

is correct, the object will fall within the stellar or substellar sequence. Background objects,

labeled with small dots, appear as having unrealistically faint absolute magnitudes and tend

to cluster at the bottom of the diagrams. The synthetic photometry is denoted by spectral

sub-type labels. Individual objects of interest are labeled with numbers and are listed in the

caption of Figure 3.5.
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(a)

(b)

Figure 3.4 Examples of sensitivity simulations around GJ 213 (M4.0V, F180M=6.68). (a) To test sub-arcsecond separations,
a mosaic of PSF insertions with several separations and magnitudes is created. In this figure the rows represent separations of
0.2′′ (bottom), and 0.4′′ (top). The columns represent apparent F180M magnitudes of 9, 10, and 11 from left to right. The
artificial companions are visible at all three magnitudes for 0.4′′ but only at the brightest magnitude for 0.2′′. (b) PSF insertions
are laid out in a radial pattern to test the sensitivity at separations of 1.0′′ and greater. Apparent F180M magnitudes range
from 12 to 19 in increments of 1, with the rays for 18 and 19 not detectable in this case. Separations are 1.0′′, 2.0′′, 3.0′′, and
4.0′′. In both simulations the residuals of the PSF subtraction are set to zero at a radius interior to the artificial companions
to facilitate detection. A thorough inspection requires using surface and contour plots.
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The trends in the F110W−F180M and the F110W−F222W colors (Figures 3.5(a) and

3.5(b)) clearly indicate that the onset of CH4 absorption happens around the L6 spectral

type, where the colors turn blue. Although any single diagram may show an overlap between

the substellar sequence and the brighter background objects, the degeneracy is broken when

we consider that L and T dwarfs follow different trends from the background sources in

different color combinations. The most dramatic example of these shifts appears in Figures

3.5(c) and 3.5(d), where methane imaging causes a large shift from red to blue for the T

dwarfs while the background sources show little change.

3.5.1.1 Benchmark Objects

GJ 1245ABC (labels 1, 2, and 4 in Figure 3.5) is an interesting system containing three low

mass components. In particular, GJ 1245C (4) is one of the latest M dwarfs for which a

dynamical mass is known. With a mass of 0.074±0.013M⊙ (Henry et al. 1999), this object

lies close to the theoretical hydrogen burning mass limit.

G 239-25B (label 3) was discovered during the first phase of this search, and the impli-

cations of the multiplicity of the G239-25 system are discussed in Golimowski et al. (2004a).

Forveille et al. (2004) assign it a spectral type of L0±1 based on near infrared spectra. This

spectral classification makes G 239-25B an important benchmark of the M/L transition at

the bottom of the main sequence. Its proximity in color space to GJ 1245C re-enforces the

importance of both objects as benchmarks.

GJ 1001BC (labels 5, 6, and 7) was resolved as a double L4.5 dwarf, and is discussed

in detail in Golimowski et al. (2004a). The components of the system are nearly equal in
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luminosity, and we plot them both individually (6 and 7) and combined (5) to illustrate how

an equal flux binary appears in the sequence. When compared to the L/T sequence outlined

by the synthetic photometry, both components of GJ 1001BC lie just before the strong shift

towards the blue that happens as a result of the onset of CH4 absorption. Their positions

at this turning point are most easily seen in the F110W−F222M color (Figure 3.5(b)).

Finally, 2MASSI J0559191-140448 (T4.5, label 8) and GJ 229 B (T6, label 9) are the only

T dwarfs imaged in the survey, and serve as confirmations that the sequence outlined by the

synthetic photometry agrees with real photometry. Whereas GJ 229B is a companion to the

M0.5V dwarf GJ 229A, 2MASSI J0559191-140448 is an isolated brown dwarf. Its positions

in panels a and b of Figure 3.5 illustrate how a mid T dwarf can easily be mistaken for a

white dwarf when more color combinations are not used to break the degeneracy.

3.5.1.2 Background Objects with Companion-Like Colors

Figure 3.5 shows that there are several sources having colors that mimic the colors of substel-

lar companions in one or more panels. The ambiguity is often accentuated when analyzing

data sets with simpler color combinations that were not designed a priori to discriminate

substellar objects (e.g. 2MASS JHKs). Interstellar reddening considerations are useful in

identifying false companions. Because the distance horizon of our search is only ∼10 pc, any

bona fide companions should not have appreciable reddening in the near infrared. Conversely,

distant main sequence or giant stars may have significant reddening in the F110W−F180M,

F110W−F207M, and F110W−F222M colors, which may place background objects in the

color space occupied by L and T dwarfs. The degeneracy is broken when considering the
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Figure 3.5 Selected color-magnitude diagrams designed to detect substellar companions. The large dots are the primary
targets of the search, including 13 white dwarfs. The small dots are background objects. Synthetic photometry of L and T
dwarfs, as well as one M9 dwarf, is plotted using a label for spectral type, with the precise dot position at the center of the
label. In these diagrams, all objects within the field of view of a primary target are plotted assuming a common parallax (i.e.
companionship). Only if the assumption is correct would the object fit in the stellar or substellar sequence. The benchmark
objects discussed in §3.5.1.1 are labeled as follows: (1) GJ 1245A, (2) GJ 1245B, (3) G 239-25B, (4) GJ 1245C, (5) GJ 1001BC
(combined), (6) GJ 1001B, (7) GJ 1001C, (8) 2MA 0559-1404, and (9) GJ 229B. Panels (a) and (b) illustrate the drastic
color shift around spectral type L6 caused by the onset of CH4 absorption. The reduced effect of interstellar reddening on
background objects displayed in panels (c) and (d), as well as the large shift from red to blue for substellar objects, make these
bands particularly useful for methane imaging.
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F207M−F222M and especially the F180M−F207M colors, where the narrow spectral cov-

erage reduces the reddening of distant main sequence sources (Figures 3.5(c) and 3.5(d)).

Table 3.2 lists cases where the distinction between a background object and a putative

companion was particularly subtle. The white dwarfs mimic late L and early T dwarfs in

F110W−F180M and F207M−F222M, but the degeneracy is broken in F180M−F207M.

Table 3.2: Background Sources with Companion-Like Colors

Primary Separation P. A. (deg) Mimics Deciding Factor
GJ 633 8.5′′ 157.3 Late L in F207M-F222M Too red to be late L in F110W-F180M

GJ 633 3.3′′ 268.6 Late L in F207M-F222M Too red to be late L in F110W-F180M

GJ 1093 8.0′′ 250.6 Mid M in F110W colors Background M1 or earlier in F207M-F222M

GJ 1224 12.6′′ 91.4 Mid L in F110W-F222M Background early M in F180M-F222M

GJ 367 8.4′′ 3.3 Early L in F180M-F207M Background main sequence in F110W-F222M

GJ 438 13.2′′ 254.0 Hot white dwarf Too red to be hot WD in F110W-F180M

3.5.2 Astrometry of Known Binaries

High resolution images of nearby binary systems present opportunities to map relatively

short period orbits and therefore determine dynamical masses. To that end, astrometry for

select systems is reported in Table 3.3. In order to be listed in Table 3.3, both components

of the system must have been imaged simultaneously in the same NIC2 field of view, and the

centroids must be determined to a precision better than ±1 pixel. The values reported are

the weighted averages of separations and position angles measured from the PSF centroids

in all filters for which saturation4 did not prevent reliable centroiding. In the simplest

case of non-saturated and non-overlapping PSF cores, a centroiding error of ±0.1 pixel was

adopted (Golimowski et al. 2004a). Twelve out of the 19 pairs listed in Table 3.3 meet these

4Saturated targets are indicated in the notes column of Table 3.4.
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criteria. The other seven pairs are either very closely separated stars for which the PSF

cores overlap significantly or have central pixel saturation. In either case, the centroiding

was determined using PSF fits. With the exception of the M dwarfs, the majority of binaries

in our survey had their PSF cores saturated beyond the point where it was possible to

compute meaningful astrometry. The precise value of the NICMOS plate scale varied during

HST cycle 7 (1997−1998) due to cryogen expansion that distorted the dewar housing the

detectors. To calibrate the plate scales for these observations, the values tabulated by the

Space Telescope Science Institute based on routine monitoring of crowded star fields were

used. For separations, the errors listed in Table 3.3 take into account the four centroiding

uncertainties (xa, ya, xb, yb) added in quadrature. For position angles, the errors take into

account the propagated centroiding errors.

Table 3.3: Astrometry of Unsaturated Resolved Systems

Pair ρ σρ P.A. σP.A. Epoch ∆F110W a ∆F180M ∆F207M ∆F222M
arcsec arcsec ◦E of N ◦

GJ 1005AB 0.329 0.008 234.4 1.0 2002.7532 · · · 1.27 1.31 1.32
GJ 65AB 1.653 0.008 103.3 0.2 2002.8540 · · · 0.18 0.15 0.16
GJ 84ABb 0.443 0.006 103.4 1.0 2002.7506 4.59 4.01 4.18 3.82
GJ 105AC 3.220 0.036 293.5 0.4 1998.0225 5.96 5.87 5.45 5.40
LP 771-95AB 7.706 0.008 315.0 0.0 2003.4620 · · · 0.36 0.36 0.35
LP 771-95BC 1.344 0.008 138.1 0.2 2003.4620 · · · 0.56 0.54 0.50
GJ 169.1AB 9.201 0.008 63.7 0.0 2002.7693 · · · 5.89 5.98 6.07
GJ 229AB 7.627 0.031 164.1 0.1 1997.6202 9.63 11.44 9.44 10.75
GJ 257AB 0.560 0.008 280.4 0.6 1998.8271 · · · 0.03 0.00 0.00
GJ 1116AB 1.498 0.007 102.7 0.2 1998.8562 0.42 0.35 0.32 0.30
GJ 618AB 5.574 0.008 226.8 0.0 1998.7837 · · · 2.66 2.58 2.49
GJ 644A-BD 0.258 0.048 151.3 7.6 1998.7868 · · · 0.41 0.41 0.43
GJ 661AB 0.647 0.008 187.6 0.5 2002.6489 · · · 0.43 0.29 0.28
GJ 1230AC-B 5.117 0.008 6.1 0.0 2003.0605 · · · 1.91 1.88 1.85
GJ 747AB 0.234 0.048 87.4 8.4 2002.9441 · · · 0.02 0.05 0.03
GJ 1245AB 6.964 0.007 82.6 0.0 1998.7734 0.17 0.16 0.15 0.13
GJ 1245AC 0.594 0.007 269.6 0.5 1998.7734 1.49 1.29 1.18 1.08
GJ 860AB 3.184 0.008 99.5 0.1 1998.8590 · · · 1.01 0.97 0.94
GJ 896AB 5.351 0.008 87.9 0.0 2004.4956 · · · 1.54 1.48 1.43

aMissing values correspond to stars with central core saturation for which a PSF fit is not available.
bValues from Golimowski et al. (2004a), Table 4.
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3.5.3 Results from the Sensitivity Search

Table 3.4, at the end of this chapter, lists the faintest detectable absolute magnitudes for

putative companions at a range of angular separations from each target star in the survey.

The distances and spectral types listed are based on the best trigonometric parallaxes and

spectral type estimates available in the literature or unpublished trigonometric parallaxes

recently measured or improved by our group. It is important to note that each line in Table

3.4 shows the results of one PSF insertion simulation, and does not necessarily correspond to

a single star. As described in the notes column, a single PSF insertion simulation may have

been done around the two components of a resolved system if their separation was small or

if their contrast was large enough for the primary to dominate the field. Because of these

situations, the number of entries in Table 3.4 is not meant to add up to the sample tallies

in Table 3.1. The reader is referred to Table 3.1 for overall statistics of the sample and to

Table 3.4 for data on individual targets.

All targets were inspected for real companions visually in all four bands over the entire

field of view. Several factors must be considered when choosing the best filter for the PSF

insertion simulations. Out of the four filters used in the search, the F110W and F180M

filters are the most suitable for close separations (. 0.4′′) due to their narrower PSFs when

compared to the F207M and F222M filters. Whereas L dwarfs are brighter in F180M than

in F110W, the T dwarfs are much fainter in F180M due to methane absorption. Although

the F110W band produces the narrowest PSFs due to its shorter wavelength and is an
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intrinsically bright band for T dwarfs, the sensitivities are reported in the F180M band

for two reasons. First, the uniform exposure time scheme (§3.3) causes brighter targets to

saturate out to several pixels in the F110W band even in 0.303 s, decreasing the ability to

probe the smallest separations. Second, the width of the F110W PSF is comparable to the

NIC2 pixel scale, causing a sharp spike on the central pixel (Krist et al. 1998, Table 2). In

low signal-to-noise situations it becomes difficult to distinguish the F110W PSF from bad

pixels or other sharp artifacts introduced during the PSF subtraction process. As discussed

in §4.1 our sensitivity limit falls mostly in the L dwarf regime for sub-arcsecond separations,

and in the T dwarf regime for wider separations. Based on comparisons in particularly clear

images, it is estimated that using F110W instead of F180M would increase the sensitivity by

∼1 magnitude, but would pose an unacceptable risk of false detections at close separations.

We therefore uniformly report sensitivities for all separations in F180M, but emphasize that

those values can be safely transformed to F110W limiting magnitudes for separation greater

than 1.0′′ by adding 1.0 magnitude to the F180M limits in Table 3.4. Because late T dwarfs

appear the faintest in F180M, a detection in that band also implies detection in the other

three bands, therefore providing the color information needed to characterize the object.

Listing our simulation results in the F180M band therefore maximizes the instrumental

dynamic range of the images while still providing the sensitivity needed to characterize T

dwarfs.
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Table 3.4: Sensitivity to Companions

Name Resolved PSFs Spectral Distance Epoch App. Mag. Absolute F180M Magnitude Limit Notes
in FOV Type (pc) (F180M) 0.2′′ 0.4′′ 0.6′′ 0.8′′ 1.0′′ 2.0′′ 3.0′′ 4.0′′

GJ 915 · · · DA5 8.1 2003 Jun 3 12.53 11.9 12.4 14.4 14.4 14.9 15.4 15.4 15.4 a

GJ 1001A A M3.0V 13.0 1998 Aug 3 7.97 8.4 11.9 13.4 13.9 14.4 16.4 16.4 16.4 b,g

GJ 1 · · · M1.5V 4.3 1998 Jan 10 4.64 8.0 11.0 12.5 13.0 14.5 16.5 17.5 18.5 · · ·

GJ 1002 · · · M5.0V 4.6 2002 Oct 27 7.79 12.4 13.4 14.9 15.9 16.4 18.4 19.4 19.4 · · ·

GJ 1005AB AB M3.5VJ 5.9 2002 Oct 3 6.71 10.1 12.1 13.1 14.1 15.1 17.1 18.1 18.1 b,d,f

GJ 15A A M1.5V 3.5 2003 Jun 26 4.48 · · · 10.7 12.2 12.2 13.2 15.2 16.2 16.2 b,d,i

GJ 15B B M3.5V 3.5 1998 Aug 19 6.20 12.4 12.4 14.4 15.4 15.4 17.4 18.4 18.4 b

GJ 17 · · · F9.5V 8.5 1997 Aug 29 2.81 · · · 8.1 9.1 10.1 10.6 13.1 14.1 15.1 i

GJ 19 · · · G0.0V 7.4 1998 Feb 2 1.25 · · · · · · · · · 8.4 9.4 11.4 12.9 13.4 i

GJ 2012 · · · DQ9 9.0 1997 Dec 31 13.58 15.8 16.8 16.8 16.8 17.8 17.8 17.8 17.8 a

GJ 33 · · · K2.5V 7.4 1998 Oct 8 3.58 · · · 8.7 10.2 11.2 11.2 13.2 15.2 15.2 i

GJ 34A A G3V 5.9 2002 Sep 10 2.09 · · · · · · 6.7 6.2 6.7 9.2 10.2 10.2 b,d,i

GJ 34B A/B K7.0V 5.9 1998 Aug 27 4.03 · · · 10.2 11.2 11.7 12.7 15.2 16.2 16.2 b

GJ 35 · · · DZ7 4.3 1997 Oct 1 11.56 16.4 17.4 18.4 18.4 19.4 19.9 19.9 19.9 · · ·

GJ 48 · · · M2.5V 8.2 1998 Oct 16 5.70 10.1 10.6 11.6 13.1 13.6 15.6 17.1 17.1 · · ·

GJ 53AB A/B K1.0VI 7.5 2002 Oct 11 3.60 · · · 7.6 8.6 10.6 11.6 13.6 14.6 15.6 b,d,f,h,i

GJ 54AB AB M3.0VJ 7.8 1998 Nov 9 5.80 9.3 10.3 11.8 12.3 13.3 15.3 17.3 17.3 b,c

GJ 54.1 · · · M4.0V 3.7 2002 Sep 17 6.73 12.1 13.1 15.1 16.1 17.1 19.1 20.1 20.1 · · ·

GJ 65A A/B M5.5V 2.6 2002 Nov 8 6.40 11.9 12.9 14.9 15.4 15.9 16.9 17.9 18.9 b,h

GJ 65B A/B M6.0V 2.6 2002 Nov 8 6.58 11.9 12.9 14.9 14.9 15.9 16.9 17.9 18.9 b,h

GJ 66A A K2.0V 7.6 2002 Sep 22 6.68 · · · 7.6 9.1 9.6 10.1 11.6 13.6 13.6 b,d,i

GJ 66B A/B K2.0V 7.6 2002 Nov 16 6.74 · · · 8.1 8.6 9.6 10.6 12.6 13.6 13.6 b,d,e,i

GJ 68 · · · K1.0V 7.5 1997 Oct 20 3.32 · · · 7.9 9.9 10.9 11.9 13.9 14.9 15.9 · · ·

LHS 145 · · · DA7 9.7 2002 Oct 18 12.66 13.7 14.7 16.7 17.2 17.7 18.7 18.7 18.7 a

GJ 71 · · · G8.5V 3.6 1997 Aug 14 1.59 · · · · · · 10.8 11.3 11.8 13.8 15.8 16.8 · · ·

GJ 75 · · · G9.0V 10.0 1998 Aug 28 3.81 · · · 8.8 10.3 10.8 11.3 13.8 14.8 14.8 i

LHS 1302 · · · M4.5V 9.9 2002 Oct 10 8.76 11.3 12.8 14.3 14.8 15.8 17.8 18.8 18.8 · · ·

GJ 83.1 · · · M4.0V 4.4 2002 Nov 24 6.90 11.7 12.7 14.7 15.2 16.2 17.7 18.7 18.7 · · ·

LHS 1326 · · · M5.5V 8.9 1997 Sep 17 9.26 12.0 14.5 15.5 16.0 16.5 17.5 18.5 18.5 e

GJ 84AB A/B M2.5VJ 9.1 2002 Oct 2 5.75 9.4 10.9 11.4 12.9 13.4 14.9 16.9 16.9 b,f

LHS 1339 · · · M2.5V 9.2 2002 Oct 1 7.78 10.9 11.9 12.9 13.9 14.9 16.9 16.9 16.9 · · ·

LHS 1375 · · · M5.5V 8.5 1997 Oct 28 9.34 13.7 14.7 16.7 16.7 17.7 17.7 17.7 17.7 · · ·

GJ 105AC A/C K3.0V 7.1 1998 Jan 9 9.19 0.9 13.9 15.9 16.9 17.9 18.9 20.9 21.9 b,f,i

APMPM J0237-5928 · · · M4.5V 9.6 2002 Jul 24 8.68 11.8 12.8 13.8 14.8 15.8 17.8 17.8 17.8 · · ·

LP 771-95A A/B/C M2.5V 6.9 2003 Jun 18 6.76 11.1 12.6 13.1 14.6 15.6 16.6 17.6 18.6 b

LP 771-95B A/B/C M3.5VJ 6.9 2003 Jun 18 7.12 10.9 11.9 13.9 14.9 15.9 16.9 17.9 · · · b,e,h

LP 771-95C A/B/C M3.5VJ 6.9 2003 Jun 18 7.68 12.0 12.5 14.0 14.5 16.5 17.5 18.5 19.5 b,e,h

GJ 1057 · · · M4.5V 8.5 1998 Jan 7 8.17 11.5 12.5 14.5 15.0 16.0 17.5 17.5 17.5 · · ·

GJ 137 · · · G5V 9.1 2002 Oct 5 3.04 · · · 7.2 8.2 9.2 10.2 12.2 13.2 14.2 d,i

GJ 139 · · · G8.0V 6.0 1997 Oct 20 2.51 · · · 9.6 10.1 11.1 11.6 12.6 14.6 15.6 i

GJ 144 · · · K2.0V 3.2 2002 Oct 18 1.88 · · · · · · 10.5 11.0 11.0 12.5 14.5 14.5 c,d,i

GJ 1061 · · · M5.0V 3.6 2002 Jul 29 6.97 12.1 13.1 14.6 15.1 16.1 18.1 19.1 19.1 · · ·

GJ 1068 · · · M4.0V 6.9 2002 Jul 22 8.21 11.8 13.8 14.8 14.8 15.8 17.8 17.8 17.8 d,i

Continued on next page
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Name Resolved PSFs Spectral Distance Epoch App. Mag. Absolute F180M Magnitude Limit Notes

in FOV Type (pc) (F180M) 0.2′′ 0.4′′ 0.6′′ 0.8′′ 1.0′′ 2.0′′ 3.0′′ 4.0′′

GJ 166A A K0.5V 4.9 2003 Feb 23 2.59 · · · · · · 10.0 10.5 11.5 13.0 14.5 14.5 b,d,i

GJ 166B B DA4 4.9 2003 Apr 1 9.99 12.0 13.5 14.0 14.5 15.5 17.5 17.5 · · · a,b,d,e

GJ 169.1A A M4.0V 5.5 2002 Oct 8 5.91 10.2 11.7 13.2 14.2 14.7 16.7 18.2 18.2 b

GJ 169.1B A/B DC5 5.5 2002 Aug 3 11.80 15.1 16.1 17.1 18.1 19.1 21.1 21.1 21.1 a,b,e

LHS 194 · · · DQ7 9.5 1998 Apr 13 12.85 14.0 15.0 16.5 17.0 18.0 18.5 20.0 20.0 a

GJ 176 · · · M2.0V 9.0 2003 Feb 17 5.68 9.9 10.9 12.4 13.4 13.9 15.9 16.9 16.9 · · ·

GJ 178 · · · F6V 8.0 1998 Feb 20 2.05 · · · 7.5 9.5 10.0 10.5 12.5 13.5 14.5 i

LHS 1731 · · · M3.0V 9.2 2002 Sep 21 7.22 10.2 11.2 12.7 13.7 14.2 15.2 17.2 17.2 · · ·

GJ 191 · · · M2.0VI 3.9 1997 Oct 18 5.12 9.2 11.2 12.2 13.2 14.2 16.2 18.2 18.2 · · ·

GJ 203 · · · M3.0V 9.7 1997 Dec 22 7.80 8.9 11.9 13.9 14.4 15.9 16.9 18.9 18.9 · · ·

GJ 213 · · · M4.0V 5.8 1997 Aug 9 6.68 10.8 12.3 13.8 14.8 15.8 17.8 18.8 18.8 · · ·

GJ 216B B K2.5V 8.9 2002 Oct 13 4.16 · · · 8.7 9.2 10.2 10.7 13.2 14.2 14.2 b,d,i

GJ 222AB AB G0.0VJ 8.6 1998 Aug 15 2.91 6.2 7.7 9.2 10.7 11.2 13.2 14.2 15.2 b,c,i

GJ 223.2 · · · DZ9 6.4 1998 May 4 12.84 14.8 17.8 19.3 19.8 20.8 20.8 20.8 20.8 a

2MA 0559-1404 · · · T4.5 10.2 2003 Jan 23 14.60 15.6 17.6 19.1 19.6 20.6 20.6 20.6 20.6 a,g

G 99-49 · · · M3.5V 5.2 2003 Jan 8 6.33 10.7 12.2 12.7 14.2 15.2 16.7 17.7 18.7 · · ·

LHS 1805 · · · M3.5V 7.5 2003 Mar 8 6.91 10.5 12.5 13.5 14.0 15.0 16.5 18.5 18.5 · · ·

LHS 1809 · · · M5.0V 9.2 1998 Feb 12 8.73 11.9 12.4 14.9 15.9 16.4 17.9 18.9 18.9 · · ·

GJ 226 · · · M2.5V 9.3 1998 Feb 15 6.26 9.4 10.4 11.9 12.9 13.4 15.4 17.4 17.4 · · ·

GJ 229A A/B M1.5V 5.7 1997 Aug 15 4.19 8.4 9.4 10.4 11.4 12.9 15.4 17.4 17.4 b

GJ 232 · · · M4.0V 8.3 1997 Dec 20 8.19 11.6 13.6 14.6 15.6 16.1 18.6 18.6 18.6 · · ·

L 032-009(A) A M2.5V 9.0 2003 May 7 5.72 9.4 10.4 11.9 12.9 13.4 15.9 16.9 16.9 b

L 032-008(B) B M3.0V 9.0 2002 Sep 23 6.49 9.7 10.7 12.7 13.7 14.2 16.7 17.7 17.7 b

GJ 244AB A/B A1.0V 2.6 2003 Mar 27 -1.39 · · · · · · · · · · · · 6.0 8.5 9.5 9.5 b,d,f,i

GJ 250B B M2.0V 8.7 1998 Mar 24 5.89 8.2 10.2 12.2 13.2 14.2 16.2 17.2 17.2 b

GJ 257A A/B M3.0V 8.0 1998 Oct 30 7.15 10.5 10.5 12.5 13.5 14.5 15.5 17.5 17.5 b,h

GJ 257B A/B M3.0V 8.0 1998 Oct 30 7.18 10.5 11.5 12.5 13.5 14.5 15.5 17.5 17.5 b,h

GJ 1093 · · · M5.0V 7.7 1997 Aug 29 8.56 12.1 13.1 15.1 16.1 16.6 18.1 18.1 18.1 · · ·

LHS 224AB A/B M4.5VJ 9.2 2003 Mar 13 8.71 · · · 12.9 15.4 15.9 17.9 18.9 19.9 19.9 b,c

GJ 280A A F5.0IV-V 3.5 2003 Jan 11 -0.67 · · · · · · · · · · · · 6.8 8.3 10.3 11.3 a,b,d,f,i

GJ 283A A DZQ6 9.1 2003 Mar 20 12.64 13.8 15.8 16.8 17.8 18.8 19.8 19.8 19.8 a,b

GJ 283B B M6.5V 9.1 2003 Mar 25 9.74 12.9 14.9 15.4 15.9 16.9 18.9 19.9 19.9 b

GJ 1103 · · · M4.5V 8.7 2002 Sep 9 8.03 12.3 13.3 14.8 14.8 15.3 17.3 18.3 18.3 · · ·

GJ 293 · · · DQ9 7.9 2002 Aug 29 12.49 15.5 16.0 17.0 18.0 19.5 21.0 21.0 21.0 a

GJ 1105 · · · M4.0V 8.2 2003 Mar 10 7.14 11.1 12.1 13.1 14.1 15.1 16.6 17.6 17.6 · · ·

GJ 2066 · · · M4.0V 6.8 1998 Sep 17 5.86 9.2 10.2 11.7 13.2 13.7 14.7 16.7 16.7 · · ·

GJ 1111 · · · M6.0V 3.6 2003 Mar 2 7.68 13.4 14.9 15.9 16.4 17.4 18.4 19.9 19.9 · · ·

GJ 318 · · · DA6 8.8 2003 Jul 4 11.60 13.9 14.9 15.9 16.9 18.4 21.9 20.9 20.9 a

GJ 1116A A/B M5.5VJ 5.2 1998 Nov 9 7.83 10.2 12.2 14.7 15.7 16.2 18.2 19.2 19.2 b,h

GJ 1116B · · · M5.5VJ 5.2 1998 Nov 9 8.17 10.6 12.6 13.1 14.6 16.1 17.6 18.6 18.6 b,h

LHS 2090 · · · M6.0V 6.3 2003 Jan 25 8.77 12.3 13.8 15.8 17.3 17.8 19.8 20.8 20.8 · · ·

GJ 338A A M0.0V 6.1 2002 Nov 27 4.04 8.6 10.6 11.1 11.6 12.6 14.1 16.1 16.1 b,d,i

GJ 341 · · · M0.0V 10.4 1997 Oct 15 5.73 7.6 9.6 11.6 12.6 13.1 14.6 16.6 16.6 g

GJ 357 · · · M2.0V 9.0 2003 Feb 13 6.72 10.9 12.9 13.4 14.4 14.9 16.9 17.9 17.9 · · ·

GJ 1128 · · · M4.0V 6.5 1998 Nov 1 7.31 11.7 12.7 14.2 14.7 16.2 17.2 19.2 19.2 · · ·

GJ 367 · · · M2.0V 9.7 1997 Sep 17 5.99 8.5 11.0 12.0 13.0 13.5 16.0 17.0 17.0 · · ·

Continued on next page
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Name Resolved PSFs Spectral Distance Epoch App. Mag. Absolute F180M Magnitude Limit Notes

in FOV Type (pc) (F180M) 0.2′′ 0.4′′ 0.6′′ 0.8′′ 1.0′′ 2.0′′ 3.0′′ 4.0′′

GJ 370 · · · K6V 11.1 1997 Aug 12 4.86 8.6 9.6 10.6 11.6 12.1 14.6 15.6 16.6 g

LHS 2206 · · · M4.0V 9.2 2003 Feb 19 8.66 10.8 12.3 13.8 15.8 16.3 18.8 19.8 19.8 · · ·

GJ 380 · · · K7.0V 4.8 2003 Feb 19 3.30 6.6 8.1 9.6 11.1 12.1 14.6 15.6 15.6 d,i

GJ 388 · · · M2.5V 4.8 1998 Mar 26 4.81 8.9 11.4 12.4 13.4 13.9 16.4 17.4 17.4 · · ·

GJ 393 · · · M2.0V 7.1 2003 Jun 16 5.46 9.7 11.2 12.7 13.2 13.7 16.2 17.2 17.2 · · ·

LHS 288 · · · M5.5V 4.7 1997 Jul 31 6.14 9.2 11.7 13.7 14.2 15.2 16.7 17.7 17.7 · · ·

LHS 292 · · · M6.5V 4.5 2004 Jun 2 8.26 11.2 13.2 14.7 15.7 16.7 19.2 20.7 20.7 a,d

GJ 1138AB A/B M4.5VJ 9.7 2003 May 10 8.04 10.1 12.1 14.1 15.1 15.1 16.1 17.1 17.1 b,c,d

GJ 402 · · · M4.0V 6.8 1998 Mar 15 6.67 10.5 12.0 13.5 14.0 15.0 16.5 17.5 17.5 · · ·

GJ 406 · · · M5.5V 2.3 2003 Feb 27 6.41 14.0 14.5 16.0 16.5 17.5 19.5 20.5 20.5 · · ·

GJ 408 · · · M2.5V 6.7 2003 Feb 6 5.60 10.0 11.0 12.5 13.5 14.5 15.5 17.5 17.5 · · ·

GJ 411 · · · M2.0V 2.5 2003 Jun 22 3.72 10.0 11.0 13.0 13.5 14.5 16.0 17.0 18.0 d,i

GJ 412A A M1.0V 4.8 2003 Jun 14 5.00 10.6 11.1 12.6 13.6 14.6 15.6 17.6 17.6 b,d,i

GJ 412B B M5.5V 4.8 2003 May 5 8.23 11.8 14.3 15.8 16.8 17.3 18.8 19.8 19.8 b

GJ 432A A K0.0V 9.5 2003 Mar 2 4.14 · · · 9.1 10.1 10.6 12.1 13.1 14.1 14.1 b,d,i

GJ 432B B DC 9.5 2004 Jun 29 13.67 15.1 15.6 17.1 17.1 17.6 17.6 17.6 17.6 a,b,h

GJ 433 · · · M2.0V 8.9 2003 Feb 3 5.76 8.5 10.5 12.0 13.0 14.0 15.0 16.0 16.0 · · ·

GJ 434 · · · G8.0V 9.6 1997 Dec 13 3.64 4.6 7.6 10.1 10.6 11.6 13.1 14.1 15.1 · · ·

GJ 438 · · · M1.0V 10.9 2002 Sep 3 6.58 8.8 10.3 11.8 12.3 13.3 14.8 15.8 15.8 d,g,i

GJ 440 · · · DQ6 4.6 1997 Jul 29 11.20 16.7 17.7 18.7 18.7 18.7 19.7 19.7 19.7 e

GJ 442A A G2.0V 9.2 1998 Aug 16 3.30 5.7 8.2 9.2 10.2 11.7 12.7 14.2 15.2 b

GJ 442B B M4.0V: 9.2 2002 Aug 31 8.24 9.7 11.7 13.7 14.2 15.2 17.2 17.2 17.2 b

GJ 445 · · · M3.5V 5.3 2003 Mar 28 6.24 9.9 11.9 12.9 13.9 14.9 16.4 18.4 18.4 · · ·

GJ 447 · · · M4.0V 3.3 1997 Jul 13 5.93 10.9 12.9 14.4 15.4 16.9 18.4 19.4 19.4 · · ·

GJ 1151 · · · M4.5V 8.1 1997 Jul 15 7.93 10.4 13.4 14.4 15.4 16.4 17.4 17.4 17.4 · · ·

GJ 450 · · · M1.5V 8.6 2003 Apr 2 5.74 8.8 9.8 11.3 12.3 13.3 15.3 16.3 16.3 · · ·

GJ 451 · · · K1.0VI 9.0 2003 Mar 5 4.50 7.7 9.2 10.7 11.2 12.2 14.2 15.2 15.2 d,i

GJ 1154 · · · M4.5V 8.3 1998 Mar 15 7.84 9.9 12.4 13.9 15.4 16.4 17.4 18.4 18.4 · · ·

GJ 475 · · · G0.0V 8.4 1997 Aug 6 2.80 4.4 6.4 8.9 9.4 11.4 12.4 14.4 15.4 · · ·

GJ 479 · · · M2.5V 9.6 2003 Jul 3 6.30 9.1 11.1 12.1 12.1 14.1 16.1 17.1 17.1 · · ·

LHS 337 · · · M4.0V 6.3 1998 Sep 3 7.70 10.5 12.5 14.0 15.0 16.5 17.0 18.0 18.0 · · ·

GJ 480.1 · · · M3.0V 7.9 2003 Jan 7 7.68 9.5 12.5 14.0 15.0 16.0 16.5 16.5 17.5 · · ·

GJ 486 · · · M4.0V 8.3 2003 May 16 6.66 9.4 11.4 12.4 12.9 14.4 15.4 17.4 17.4 · · ·

GJ 493.1 · · · M4.5V 8.1 1997 Aug 14 7.97 11.0 13.5 14.5 15.0 16.5 17.5 17.5 17.5 · · ·

GJ 494 · · · M0.0V 11.4 1997 Aug 13 5.74 8.2 10.7 11.7 12.2 13.7 14.7 15.7 16.7 g

GJ 506 · · · G7.0V 8.5 2003 Jul 1 2.97 · · · 7.3 8.3 9.3 10.3 12.3 13.3 14.3 d,i

GJ 518 · · · DZ9 8.2 1998 Jan 3 12.81 14.9 15.4 16.9 17.4 17.4 17.9 · · · · · · a,e

LHS 2784 · · · M3.5V 9.2 2002 Dec 5 7.29 9.2 11.2 13.2 14.2 15.7 16.7 18.2 18.2 · · ·

GJ 551 C M5.0V 1.3 2003 Apr 6 4.84 10.4 12.9 14.4 15.4 16.4 17.4 19.4 19.4 b,d,i

LHS 2930 · · · M6.5V 9.6 1997 Oct 18 10.21 12.1 15.1 16.1 16.6 17.1 17.6 17.6 17.6 e

GJ 555 · · · M4.0V 6.2 1998 Mar 20 6.19 10.5 11.5 13.0 13.5 15.0 16.0 18.0 18.0 · · ·

GJ 559A A G2.0V 1.3 1998 Oct 22 -1.89 · · · · · · · · · 7.9 8.9 9.9 12.4 12.4 a,b,d,i

GJ 559B B K0V 1.3 1998 Oct 19 · · · · · · · · · · · · 8.4 9.9 11.4 13.4 13.4 a,b,i

G 239-25AB A/B M3VJ 9.8 1998 Nov 7 6.73 9.0 11.0 12.0 13.5 14.0 16.0 17.0 17.0 b,f,g

GJ 566A A/B G7.0V 6.7 1998 Sep 14 2.94 · · · · · · 8.8 10.8 12.8 13.8 14.8 14.8 b,h,i

GJ 566B A/B K4V 6.7 1998 Sep 14 · · · · · · 6.8 8.8 8.8 10.3 11.8 · · · · · · a,b,e,h,i

Continued on next page
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TVLM 513-46546 · · · M9.0V 10.5 2002 Sep 8 11.16 11.4 13.4 14.9 15.4 16.4 17.4 17.9 17.9 a,e,g

GJ 581 · · · M3.0V 6.3 1998 May 6 6.07 9.5 11.5 13.0 14.0 15.5 17.0 18.0 18.0 · · ·

GJ 588 · · · M2.5V 5.9 1997 Sep 18 4.95 7.6 10.6 12.1 13.1 14.6 16.1 17.1 17.1 · · ·

GJ 609 · · · M3.5V 9.9 1997 Dec 31 7.62 10.5 13.0 13.5 14.5 15.0 17.0 17.5 17.5 · · ·

GJ 618B A/B M4.5V 8.3 1998 Oct 14 8.83 9.9 11.4 12.4 12.9 13.9 16.4 16.4 16.4 b,e

GJ 623AB AB M2.5VJ 8.0 1998 Sep 11 6.16 · · · 10.5 11.5 13.0 13.5 15.5 16.5 16.5 b,c

GJ 625 · · · M1.5V 6.5 2002 Sep 10 5.94 7.9 10.9 11.9 12.9 13.9 15.9 16.9 17.9 · · ·

GJ 628 · · · M3.5V 4.2 1997 Aug 12 5.37 9.8 10.8 12.8 14.3 14.8 16.8 17.8 17.8 · · ·

GJ 631 · · · K0.0V 9.7 1998 Jul 13 3.69 7.1 9.1 10.1 11.1 11.6 13.1 14.1 15.1 · · ·

GJ 633 · · · M2.5V 21.9 1997 Sep 6 8.33 10.3 11.3 12.8 13.3 14.8 15.3 15.3 15.3 g

GJ 638 · · · K7.0V 9.8 2002 Aug 28 4.88 7.0 9.0 10.0 10.5 11.5 14.0 15.0 16.0 d

GJ 643 · · · M3.0V 6.4 2002 Oct 15 7.03 11.5 12.5 14.0 15.0 16.0 18.0 19.0 19.0 · · ·

GJ 644ABD A/BD M2.5VJ 6.4 1998 Oct 15 4.78 · · · 8.0 10.0 10.5 11.5 13.0 15.0 16.0 b,c,d

GJ 644C C M7.0V 6.4 2003 Jun 8 9.20 12.0 14.0 16.0 16.5 17.0 18.0 18.0 18.0 b,d

GJ 1207 · · · M3.5V 8.6 1997 Sep 16 7.29 10.3 12.3 13.8 14.3 15.8 17.3 17.3 17.3 · · ·

GJ 649 · · · M0.5V 10.2 1997 Sep 23 5.69 7.9 9.9 10.9 12.9 14.4 15.9 16.9 16.9 g

LHS 3262 · · · M5.0V 9.4 1997 Aug 17 8.07 10.1 13.1 14.6 15.1 16.1 17.1 17.6 17.6 · · ·

G 203-47AB AB M3.5VJ 7.4 2002 Nov 8 6.76 10.1 12.1 13.1 14.1 14.6 16.6 17.6 17.6 b,c,d

GJ 661AB A/B M3.0VJ 6.4 2002 Aug 26 5.07 7.5 9.5 11.0 13.0 13.5 16.0 17.5 18.0 b,d,f,h

GJ 664 · · · K5.0V 5.9 2002 Oct 22 · · · · · · · · · 10.6 11.1 12.6 14.1 15.1 15.1 d

GJ 666B A/B K7.0V 8.7 1998 Oct 26 4.95 8.3 9.8 11.3 12.3 13.3 15.3 16.3 16.3 b

GJ 667A A/B K4.0VJ 7.2 2003 Feb 1 3.23 6.7 7.7 8.7 9.7 10.7 12.7 14.7 15.7 b,d,h,i

GJ 667B A/B K4.0VJ 7.2 2003 Feb 1 3.23 6.7 8.7 9.7 9.7 11.7 13.7 15.7 15.7 b,d,h,i

GJ 673 · · · K7.0V 7.7 1997 Oct 27 4.20 6.6 8.6 10.6 11.6 13.1 14.6 15.6 16.6 · · ·

GJ 674 · · · M2.5V 4.5 1997 Sep 7 5.02 9.7 10.7 12.7 13.7 14.7 16.7 17.7 17.7 · · ·

GJ 678.1 · · · M0.5V 9.9 2002 Aug 22 5.65 7.0 10.0 11.5 12.0 13.0 15.0 16.0 16.0 d

GJ 682 · · · M4.0V 5.0 1998 Oct 30 5.79 8.5 11.5 13.5 14.0 15.0 16.5 17.5 17.5 · · ·

GJ 687 · · · M3.0V 4.5 1998 Feb 5 4.61 8.7 10.2 12.7 13.2 13.7 15.7 17.7 17.7 · · ·

GJ 686 · · · M0.5V 8.0 1997 Aug 1 5.69 8.5 10.5 12.5 14.0 14.5 15.5 16.0 16.5 · · ·

GJ 694 · · · M3.0V 9.5 1998 Jul 24 6.10 9.1 10.1 11.6 13.1 14.1 16.1 17.1 17.1 · · ·

GJ 2130BC · · · M2.0V 14.1 1998 Sep 17 6.75 8.7 10.2 11.2 12.2 13.2 16.2 16.2 16.2 b,c,g

GJ 1221 · · · DXP9 6.0 1997 Aug 15 12.48 16.1 17.1 18.1 19.1 19.1 19.1 19.1 19.1 · · ·

GJ 699 · · · M3.5V 1.8 1997 Sep 21 4.82 10.7 12.7 14.7 15.7 17.2 17.7 19.7 19.7 · · ·

GJ 701 · · · M1.0V 7.7 1997 Aug 14 5.45 8.5 10.5 12.5 13.0 14.0 14.5 15.5 15.5 · · ·

GJ 702A A/B K0.0V 5.1 2002 Sep 18 1.88 · · · · · · 8.5 9.5 10.5 12.5 14.5 14.5 b,d,i

GJ 702B A/B K5.0V 5.1 2002 Sep 18 1.88 · · · 6.5 8.5 10.5 12.5 13.5 14.5 14.5 b,d,e,i

GJ 1224 · · · M4.0V 7.5 1997 Sep 19 7.98 11.6 12.6 14.1 14.6 16.6 17.6 18.6 18.6 · · ·

LHS 3376 · · · M4.5V 7.2 2002 Aug 20 8.26 12.2 13.7 14.2 14.7 16.2 17.2 17.7 17.7 · · ·

GJ 713AB AB F7VJ 8.1 2003 Feb 28 2.37 · · · · · · 7.5 8.5 9.5 11.5 13.5 13.5 b,c,d,i

GJ 1227 · · · M4.5V 8.2 1997 Jul 30 7.93 12.4 13.4 14.4 15.4 15.9 17.4 17.4 17.4 · · ·

GJ 721 · · · A0.0V 7.7 2002 Dec 12 -0.03 · · · · · · · · · 4.1 5.6 8.6 9.6 9.6 a,d,i

GJ 1230AC AC/B M4.0VJ 8.2 2003 Jan 23 6.91 8.4 9.9 12.4 12.9 13.4 16.4 17.4 17.4 b,c,d

GJ 1230B AC/B M5.0V 8.2 2003 Jan 23 8.03 11.4 13.4 14.4 15.4 16.4 17.4 17.4 17.4 b,d,e

GJ 725A A M3.0V 3.5 1998 Jul 21 4.59 9.3 10.3 12.3 13.3 15.3 16.3 17.3 17.3 b

GJ 725B B M3.5V 3.5 1998 Oct 13 5.15 8.3 11.3 13.3 14.3 15.3 17.3 18.3 18.3 b

GJ 745A A K7.0V 8.6 1998 Aug 25 6.68 9.8 11.3 12.3 13.3 14.3 15.3 17.3 17.3 b

Continued on next page
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GJ 745B B M1.0V 8.6 2002 Oct 7 6.75 9.3 10.3 12.3 13.3 14.3 15.3 17.3 17.3 b,d,e

GJ 747AB AB M3.5VJ 8.1 2002 Dec 11 6.66 · · · · · · 10.4 11.4 12.4 14.4 15.4 17.4 a,b,c,d

GJ 752A A M2.5V 5.8 1998 Nov 10 4.73 8.7 10.2 11.7 12.2 13.2 15.2 16.2 17.2 b

GJ 752B B M8.0V 5.8 2002 Aug 6 9.18 12.2 14.2 15.2 16.2 17.2 19.2 19.2 19.2 b

GJ 1235 · · · M4.0V 9.9 1997 Aug 16 8.14 11.0 13.0 14.0 15.5 16.0 17.0 18.0 18.0 · · ·

GJ 764 · · · G9.0V 5.7 2003 Jan 1 3.04 · · · 8.2 9.2 10.2 11.7 13.2 14.2 15.2 i

GJ 768 · · · A7.0V 5.1 1997 Oct 13 0.18 · · · · · · 8.5 9.5 10.5 12.5 13.0 13.5 i

GJ 1245AC A/B/C M5.5VJ 4.5 1998 Oct 10 7.32 11.7 12.7 14.2 15.2 16.2 17.7 18.7 18.7 b,f,h

GJ 1245B A/B/C M6.0V 4.5 2003 Feb 14 7.67 11.2 12.7 13.7 14.7 15.7 17.7 18.7 18.7 b

GJ 780 · · · G8.0IV 6.1 1997 Aug 25 1.92 · · · 7.1 8.6 10.1 11.1 13.1 14.1 14.1 i

GJ 783A A/B K2.5V 6.0 2003 Mar 21 3.00 · · · 8.1 9.1 9.6 10.6 13.1 14.1 14.1 b,d,i

GJ 783B A/B M2.5V 6.0 2003 Mar 21 · · · 9.1 11.1 12.1 13.1 14.1 16.1 17.1 17.1 b,e

GJ 784 · · · M0.0V 6.2 1997 Oct 14 4.39 7.0 10.0 11.5 12.0 13.0 15.0 16.0 16.0 · · ·

GJ 785 · · · K2.0V 8.9 1997 Oct 19 3.73 · · · 8.3 9.3 10.3 11.3 13.3 14.3 14.3 i

GJ 1253 · · · M5.0V 9.5 1998 Jan 7 8.27 10.1 12.1 13.6 15.1 16.1 17.1 18.1 18.1 · · ·

GJ 791.2AB AB M4.5VJ 8.8 2002 Oct 28 7.67 10.3 12.3 13.3 14.3 15.3 17.3 18.3 18.3 b,c,d

GJ 793 · · · M3.0V 8.0 1997 Aug 9 6.03 8.5 11.0 12.5 13.5 15.5 16.5 17.5 17.5 · · ·

GJ 809 · · · M0.0V 7.0 2003 Jul 2 4.92 7.8 9.8 10.8 11.8 12.8 14.8 15.8 16.8 d,i

GJ 820A A K5.0V 3.5 2002 Dec 3 2.54 · · · · · · 9.3 10.3 11.3 13.3 14.3 15.3 b,d,i

GJ 820B B K7.0V 3.5 2002 Oct 16 2.89 7.3 8.3 9.3 11.3 12.3 14.3 15.3 15.3 b,d,i

GJ 827 · · · F9.0V 9.2 1997 Aug 30 2.96 6.2 7.2 9.2 10.2 11.2 13.2 14.2 14.2 i

GJ 829AB A/B M3.0VJ 6.7 2002 Nov 17 5.74 9.4 10.9 11.9 12.9 13.9 15.9 16.9 16.9 b,c,d

GJ 831AB A/B M4.0VJ 7.9 2002 Oct 11 6.69 8.5 10.5 12.5 13.5 14.5 16.5 17.5 17.5 b,c

GJ 832 · · · M1.5V 4.9 1997 Jul 28 4.60 8.5 10.5 11.5 12.5 14.5 15.5 16.5 16.5 · · ·

G 188-38 · · · M3.5V 8.9 1997 Oct 11 6.96 8.7 10.2 12.2 13.2 14.2 15.2 16.2 16.2 · · ·

GJ 846 · · · M3.5V 10.2 1997 Nov 17 5.36 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 g

LHS 3746 · · · M3.5V 7.4 2002 Nov 18 6.79 9.6 10.6 11.6 13.6 14.6 16.6 17.6 17.6 · · ·

GJ 845A A K4.0V 3.6 1997 Aug 4 2.17 · · · · · · 10.2 11.2 12.2 14.2 16.2 16.2 b,i

GJ 849 · · · M3.0V 8.9 1997 Nov 15 5.69 9.2 10.2 11.2 12.2 13.2 15.2 17.2 17.2 · · ·

LHS 3799 · · · M4.5V 7.4 1997 Oct 29 7.47 10.1 12.6 14.1 14.6 15.6 16.6 17.6 17.6 · · ·

GJ 860A A/B M3.0V 4.0 1998 Nov 10 5.04 10.0 11.0 13.0 14.0 15.0 17.0 18.0 18.0 b,d

GJ 860B A/B M4.0V 4.0 1998 Nov 10 5.04 12.0 13.0 14.0 14.5 15.0 17.0 18.0 18.0 b,d,e

GJ 867AC AC M2.0VJ 8.6 2002 Nov 18 5.11 8.8 10.3 11.3 12.3 13.3 15.3 16.3 16.3 b,c,d,i

GJ 867B B M3.5V 8.6 1998 Aug 14 6.66 8.8 10.3 12.3 12.8 14.3 16.3 17.3 17.3 b

GJ 873 · · · M3.5V 5.0 2002 Dec 24 5.55 8.5 10.5 12.5 13.5 14.5 16.5 17.5 18.5 · · ·

GJ 876 · · · M3.5V 4.6 1997 Dec 5 5.16 8.7 10.7 12.7 13.7 14.7 15.7 17.7 18.7 · · ·

GJ 1276 · · · DZ9+ 8.5 1997 Sep 21 13.56 15.3 16.3 17.3 17.3 17.3 18.3 18.3 18.3 a

GJ 877 · · · M2.5V 8.6 1997 Aug 29 5.94 8.3 10.3 11.3 12.3 13.3 16.3 17.3 17.3 · · ·

GJ 880 · · · M1.5V 6.8 2002 Oct 15 4.80 8.3 9.8 10.8 11.8 12.8 14.8 15.8 16.8 d,i

GJ 881 A A4.0V 7.6 1998 Aug 6 0.94 · · · · · · 5.6 6.6 7.6 8.6 10.6 11.6 a,b,d,i

GJ 884 · · · K7.0V 8.2 1997 Dec 28 4.44 7.4 9.4 10.4 11.4 12.4 13.4 15.4 15.4 · · ·

GJ 887 · · · M1.0V 3.2 1997 Sep 11 3.45 7.4 9.9 11.4 12.9 14.4 15.4 17.4 17.4 · · ·

GJ 892 · · · K3.0V 6.5 1997 Sep 19 3.17 · · · 8.4 9.9 10.9 11.9 12.9 14.9 14.9 i

GJ 896A A/B M3.5V 6.2 2004 Jun 30 5.57 7.0 8.5 10.0 11.0 12.0 14.0 15.0 16.0 a,b

GJ 896B A/B M4.5V 6.2 2004 Jun 30 6.55 8.0 10.0 12.0 12.0 13.0 14.0 15.0 16.0 a,b

Continued on next page
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GJ 1286 · · · M5.0V 7.2 1997 Sep 18 8.42 13.7 14.7 15.7 16.2 16.7 18.7 18.7 18.7 · · ·

GJ 902 · · · K3V 11.4 1997 Oct 19 4.56 7.7 8.7 10.7 11.7 11.7 13.7 14.7 15.7 g

GJ 905 · · · M5.5V 3.1 2003 Jan 12 6.25 11.5 13.5 14.0 14.5 15.5 17.5 18.5 19.5 · · ·

GJ 1289 · · · M3.5V 8.1 1997 Sep 10 7.39 10.5 12.5 13.5 14.5 15.5 17.5 18.5 18.5 · · ·

GJ 908 · · · M1.0V 5.9 1997 Sep 9 5.13 9.6 10.6 12.1 13.1 14.1 16.1 17.1 17.1 · · ·

aNo PSF subtraction
bKnown multiple system, excluding planets. J in spectral type label means joint spectral type.
cSensitivity measured around unresolved or very close binary
d2MASS H magnitude for primary
eOff-center by more than 5′′
fSensitivity measured around brighter component only
gBeyond 10 pc
hSensitivity measurements exclude 30◦ between components.
iSaturated core



52

CHAPTER 4

M Dwarf Multiplicity and its Implications

This chapter is based on §§5.4 and higher of “The Solar Neighborhood XXVIII: The Mul-

tiplicity Fraction of Nearby Stars from 5 to 70 AU and the Brown Dwarf Desert Around M

Dwarfs”, by Dieterich et al. (2012).

Of the 188 star systems imaged within 10 pc in the NICMOS survey, 126 systems have M

dwarfs as the primary (or single) component1 (Table 3.1). We now apply the sensitivity limits

listed in Table 3.4 to derive the multiplicity fraction for M dwarfs under several scenarios.

4.1 Establishing Search Completeness for M Dwarfs

Figures 4.1 (a) and (b) show the ranges in sensitivities obtained for M dwarfs at each of

the eight angular separations probed by the PSF insertion simulations. In Figure 4.1(b),

the known distance to each target was used to convert contrasts into absolute magnitudes,

and relate these absolute magnitudes to the spectral types of putative companions. Because

sensitivity is a complex function of contrast, instrumental background, apparent magnitude,

and the quality of the PSF subtraction, there is a significant spread about the mean values

quoted in Figure 4.1. Overall, the search would detect companions with ∆F180M=2.5 to

10.2 magnitudes at separations of 0.2′′ to 4.0′′, respectively.

1GJ 169.1AB is an M4.0V/white dwarf binary. Although the brighter M4.0V component is generally
considered to be the primary component, the current situation does not reflect the components’ masses or
spectral types at the time of stellar formation and main sequence evolution, when the current white dwarf
was much more massive and luminous than the M dwarf. We therefore do not consider GJ 169.1AB to be a
system with an M dwarf primary.
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(a)

(b)

Figure 4.1 Search sensitivities for the eight angular separations tested by PSF insertion simulations. In both panels, the
two numbers next to each cluster of points are the mean and standard deviation for that separation, respectively. (a) The
ability to detect a companion is primarily determined by the angular separation and the components’ ∆m. This instrumental
representation has a lower standard deviation, but does not directly indicate the characteristics of the putative companions.
(b) The limiting absolute magnitudes from Table 3.4 yield a range of possible companion types detectable at each angular
separation. The even vertical spacing in (b) is a consequence of the lower precision of the absolute magnitudes in Table 3.4
when compared to the observed photometry for each science target used to calculate ∆ magnitudes in (a). The absolute F180M

magnitude for select spectral subtypes is taken from the synthetic photometry displayed in Figure 3.5.
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In order to transform the observational sensitivities (Figure 4.1(a)) to astrophysical pa-

rameters, we substitute physical separations in AU in place of angular separations and apply

the statistical relation between physical separation and semi-major axis for a sample of bina-

ries with random inclinations and eccentricities,< a >= 1.26 < ρ > (Fischer & Marcy 1992),

obtaining Figure 4.2. The large plus signs in Figure 4.2 indicate the 90% detection limits for

semi-major axes ranging from 0 to 40 AU, binned in 2 AU increments. A flat contrast curve

is assumed for sensitivities beyond 40 AU. Because of the large factor in distance covered

by this volume-limited search, the 90% detection limits in physical separation are effectively

established by the most distant stars in the sample. It is possible to boost sensitivity at

closer physical separations by establishing a closer distance horizon for the search, at the

expense of overall sample size. We examined the effect of using a closer distance horizon

for calculating sensitivity limits, and came to the conclusion that it is more important to

maintain a robust sample, especially because more sensitive but much smaller studies have

already been done (e.g., Close et al. 2003).

It is also important to consider the effect that the small field of view of NIC2 (19.5′′×19.5′′)

has on sample completeness at large physical separations. Figure 4.3 is a histogram display-

ing the fraction of M dwarfs, including resolved system secondaries, sampled within 10 pc

(N=141) as a function of outer search radius, binned in 10 AU increments. While all M

dwarfs were probed to semi-major axes as close as 5 AU2, only the farthest 12 targets were

2As noted in Table 3.4, GJ 15A, LHS 224AB, GJ 623AB, and GJ 644ABD are M dwarfs for which core
saturation prevented the establishment of a sensitivity limit at 0.2′′. A single M dwarf system, GJ 747AB,
saturated out to 0.4′′. All of these cases correspond to statistically corrected semi-major axes smaller than
5 AU.
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(a)

(b)

Figure 4.2 (a) Search sensitivity displayed as a function of absolute F180M magnitude and mean semi-major axis, assuming
< a >= 1.26 < ρ > (Fischer & Marcy 1992). Each dot represents the sensitivity derived from a PSF insertion around an M
dwarf (Table 3.4). The range of limiting absolute magnitudes is significantly wider at close separations because all targets were
probed at close physical separations, whereas only targets close to the distance limit of 10 pc could be probed at wide physical
separations given NIC2’s small field of view. Contrast is also more strongly dependent on overall brightness at close angular
separations. The large plusses represent the absolute magnitude limits where 90% of companions can be detected at a given
physical separation. The numbers indicate the positions of the companions listed in Table 4.1: (1) GJ 84B, (2) GJ 65B, (3) GJ
661B, (4) GJ 257B, (5) GJ 1116B, (6) GJ 860B, (7) GJ 1245B, (8) GJ 896B, (9) GJ 1230B, (10) GJ 229B, (11) GJ 618B, and
(12) LP 771-95B. The large blank space in the center and right-hand-side of the diagram is a clear representation of the “brown
dwarf desert”. (b) Same as (a), but using absolute F110W, and omitting separations ≤ 1.0′′. While the sensitivity to T dwarfs
is increased in (b), the sensitivity to L dwarfs is decreased and close separations cannot be probed. See §3.5.3 for discussion.
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Figure 4.3 Statistical semi-major axis distribution for companion search around all 141 M dwarf components within 10 pc.
The shaded area indicates the separation ranges we consider when calculating the multiplicity fraction, with the dashed lines
indicating the inner radius limits for M and L dwarfs (5 AU), and for the T dwarfs (10 AU) and the outer radius for both (70
AU). Search completeness diminishes with increasing separation because NIC2’s field of view limits our search radius to ∼ 9′′.

probed to semi-major axes greater than 120 AU. In order to retain the statistical significance

of the sample, only physical separations corresponding to mean semi-major axes between 5

and 70 AU (100% to 79.4% complete) were considered, and the number of companions found

in the bins from 40 to 70 AU was divided by that bin’s completeness fraction.

4.2 The M Dwarf Multiplicity Fraction

Table 4.1 lists companions to M dwarfs in the sample within the completeness range of 5

to 70 AU that were re-detected in the search or are new companions discovered during this



57

search and published in Golimowski et al. (2004a). Combining these known binaries to the

null detections and sensitivity limits presented in Figures 4.1−4.3, we now present formal

multiplicity fractions for three distinct combinations of companion types and ranges in semi-

major axes. These results are summarized in Table 4.2. In each case, the 1σ confidence in-

tervals were calculated using the binomial distribution approach outlined by Burgasser et al.

(2003b). This approach is preferable whenever the probability distribution is non-Gaussian

due to a small sample. In each of the three different scenarios discussed below the mul-

tiplicity fraction is low enough that even with the sample of 126 systems, the probability

distribution is not symmetric about the central peak value because proximity to the limiting

case of a multiplicity fraction of zero causes a sharper drop-off towards the lower limit of

the probability distribution (Figure 4.4). Given a multiplicity fraction ǫm, the probability

distribution of finding n binaries in a sample of N systems is governed by

P (n) =
N !

n!(N − n)!
ǫn
m(1 − ǫm)N−n.

This relationship can be inverted to solve for the probability distribution of a given multi-

plicity fraction given the observational results N and n, yielding

P ′(ǫm) = (N + 1)P (n),

which can then be integrated numerically to find the lower and upper limits of ǫm correspond-

ing to 68% (1σ for a Gaussian distribution) of the area under the probability distribution
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curve, as shown by the shaded areas in Figure 4.4.

Table 4.1: Recovered M Dwarf Multiple Systems

A Componenta Spectral MH
b Massc B Component Spectral MH

b Mass Angular Inferred
Type M⊙ Type M⊙ Separation Semi-major Axis (AU)f

GJ 229A M1.5V 5.41 0.59 GJ 229B T6.0 16.81 0.05:d 7.62′′ 55.2
GJ 84A M2.5V 5.95 0.52 GJ 84B M7.0V 10.54 0.084e 0.44′′ 5.2
GJ 661A M3.0V 6.03 0.51 GJ 661B M3.0V 6.03 0.51 0.70′′ 5.6
GJ 896A M3.5V 6.60 0.39 GJ 896B M4.5V 7.62 0.22 5.35′′ 42.1
GJ 618A M2.5V 6.62 0.38 GJ 618B M4.5V 8.43 0.15 5.62′′ 58.7
GJ 860A M3.0V 7.02 0.31 GJ 860B M4.0V 7.95 0.18 3.19′′ 16.2
GJ 1230A M4.0V 7.34 0.26 GJ 1230B M5.0V 8.46 0.15 5.11′′ 53.2
LP 771-95A M2.5V 7.56 0.23 LP 771-95B M3.5V 7.92 0.18 7.74′′ 67.8
GJ 257A M3.0V 7.63 0.22 GJ 257B M3.0V 7.66 0.21 0.57′′ 5.7
GJ 1245A M5.5V 9.05 0.12 GJ 1245B M6.0V 9.40 0.10 7.01′′ 40.1
GJ 1116A M5.5V 9.24 0.11 GJ 1116B M6.0V 9.58 0.10 1.51′′ 9.9
GJ 65A M5.5V 9.32 0.11 GJ 65B M6.0V 9.50 0.10 1.66′′ 5.6

4.2.1 The M Dwarf Multiplicity Fraction for M0V to M9V Companions at
Separations of 5 to 70 AU

At an inner search radius of 5 AU, the search is 90% sensitive to MF180M . 11.2, corre-

sponding to early L spectral types (Figure 4.2(a)). Eleven of the 12 known companions

listed in Table 4.1 are M dwarfs meeting this sensitivity criterion. Five of these companions

lie between 40 and 70 AU, where the completeness of the search is reduced due to the limited

field of view. Placing these five systems into the separation bins shown in Figure 4.3 yields

2 systems in the 40−50 AU bin, 2 systems in the 50−60 AU bin, and one additional sys-

tem in the 60−70 AU bin. Dividing these numbers by the fractional completeness of these

bins (0.957, 0.879, and 0.794) and summing the results yields 5.62. We then transform the

aOrdered by decreasing mass, as shown in Figure 4.5.
bH band photometry from 2MASS. Close binaries were deconvolved adopting ∆H = ∆F180M .
cBased on the Mass-Luminosity Relation of Henry & McCarthy (1993).
dEstimate based on Allard et al. (1996).
eGolimowski et al. (2004a)
fStatistically corrected for projection effects (Fischer & Marcy 1992).
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multiplicity obtained at 90% confidence level to a true volume limited multiplicity fraction

by dividing 11.62 (the sum of 5.62 and the remaining companions from 5−40 AU) by 0.9,

obtaining 12.91. Rounding this number up to 13, we see that we would likely have recov-

ered 2 additional real companions with separations ranging from 5 to 70 AU. Applying the

binomial distribution, we conclude that the multiplicity fraction for M dwarf companions

orbiting M dwarf primaries at semi-major axes from 5 to 70 AU is ǫm = 10.3+3.4
−2.1% (Figure

4.4(a)).

4.2.2 The M Dwarf Multiplicity Fraction for L0 to L9 Companions at
Separations of 5 to 70 AU

Although the search did not detect any L dwarf companions within 10 pc and in the sep-

aration regime of 5 to 70 AU,3 it is possible to assign a multiplicity fraction based on

completeness arguments. Figure 4.2(a) shows that at 5 AU, the detection rate for L dwarfs

is only ∼50%. It is not possible to obtain a truly volume limited multiplicity fraction in this

separation range. We therefore constrain the sample to include only the 51 systems for which

the detection of an L9 companion at 5 AU is possible. Applying the binomial distribution, we

obtain a multiplicity fraction of of ǫm = 0.0+3.5
−0.0% (Figure 4.4(b)). An alternative approach

is to maintain the volume limited nature of the sample by increasing the inner limit of the

separation range. From Figure 4.2a, the inner radius at which >90% of the systems were

probed is 12 AU. We therefore calculate a volume limited multiplicity fraction for L0 to L9

companions to M dwarfs of ǫm = 0.0+1.4
−0.0% valid at separations ranging from 12 to 70 AU.

3GJ 1001 B and C are beyond 10 pc (Henry et al. 2006).
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4.2.3 The M Dwarf Multiplicity Fraction for L0 to T9 Companions at
Separations of 10 to 70 AU

The sensitivity to T dwarfs at close separations is diminished due to their intrinsic faintness.

We therefore restrict the inner search radius to 10 AU, where the search was 90% sensitive

to L dwarfs and ∼50% sensitive to late T dwarfs. At separations beyond 12 AU, Figure

4.2(b) indicates considerable scatter in the 90% sensitivity limits. Based on the trend on

Figure 4.2b, we adopt a 90% sensitivity limit of MF110W = 17.5, corresponding to spectral

type ∼T9. One T6 dwarf, the class prototype GJ 229B (§2.1), was detected at an inferred

semi-major axis of 55.3 AU. Following the same approach used for the L dwarfs, we calculate

the multiplicity fraction for a sub-sample as well as for the volume limited sample. There

were 43 systems for which a late T dwarf detection at 10 AU was possible. This sub-sample

yields a multiplicity fraction of ǫm = 2.3+5.0
−0.7% The complete sample is sensitive to late T

dwarfs at separations ≥ 14 AU. We therefore calculate a volume limited multiplicity fraction

of ǫm = 0.8+1.8
−0.2% valid at separations ranging from 14 to 70 AU.

The multiplicity fractions derived above for the various separation and contrast regimes

are summarized in Table 4.2. Figure 4.4 illustrates the probability densities derived from

binomial statistics for three of the configurations listed in Table 4.2.

Table 4.2: M Dwarf Multiplicity Fractions

Companion Range Search Radius Systems Detections Hidden Mult. Fraction Volume
Spectral Type AU Probed % Limited?

M0V - M9V 5 - 70 126 11 2 10.3+3.4
−2.1 Yes

L0 - L9 5 - 70 51 0 0 0.0+3.5
−0.0 No

L0 - L9 12 - 70 126 0 0 0.0+1.4
−0.0 Yes

L0 - T9 10 - 70 43 1 0 2.3+5.0
−0.7 No

L0 - T9 14 - 70 126 1 0 0.8+1.8
−0.2 Yes
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(a) (b)

(c)

Figure 4.4 Probability density distributions for select multiplicity fractions listed in Table 4.2, calculated using the binomial
distribution. The shaded areas correspond to 68% of the area under the curve, equivalent to the 1σ confidence range. The
individual plots correspond to: (a) M dwarf companions, (b) L dwarf companions (not volume limited), and (c) L and T dwarf
companions (not volume limited).

4.3 Sensitivity to Companion Masses

Estimating masses for field brown dwarfs is a difficult problem. Whereas the masses of main

sequence stars can be estimated from mass-luminosity relations (Henry & McCarthy 1993;
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Henry et al. 1999; Delfosse et al. 2000), brown dwarfs are constantly cooling, and therefore

have a mass-luminosity-age relation. Such a relation has not yet been established empirically

(§2.7). Currently, the best way of estimating brown dwarf masses is by correlating spectral

types to effective temperatures, and then checking the effective temperature against evolu-

tionary model predictions, assuming a certain age for the brown dwarf in question. This

approach is heavily model dependent, and the end result of such calculation can at best

serve as a guideline for the mass range for a particular object. With this caveat in mind, we

now apply this approach to the limiting spectral types listed in Table 4.2.

Assuming a mean age of 3 Gyr for the nearby L dwarf field population (Seifahrt et al.

2010), the effective temperatures for brown dwarfs of spectral types L3, L5, L8, T5, and

T7 are estimated to be roughly 2000K, 1750K, 1500K, 1200K, and 900K, respectively

(Golimowski et al. 2004b; Cushing et al. 2008). Adopting the evolutionary models of Chabrier et al.

(2000), one can estimate approximate masses of 0.073 M⊙, 0.070 M⊙, 0.057 M⊙, 0.052 M⊙,

and 0.040 M⊙ for spectral types L3, L5, L8, T5, and T7 (Table 4.3). The last number has

considerable uncertainty due to the need to extrapolate the Chabrier models at low tempera-

tures. We therefore adopt 0.040M⊙ at 3 Gyr as a guideline for the minimum mass detectable

by the search. It is important to note that the scatter in age in the nearby field population

is likely to cause a large dispersion in the masses of detectable objects. Unless there are

further data indicative of the age of an individual brown dwarf, the mean value adopted here

should be used with extreme caution.
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Table 4.3: Masses (M⊙) Based on Models of Chabrier et al. (2000).

Sp. Type L3 L5 L8 T5 T7
Teff

a 2000 1750 1500 1200 900:
1 Gyr 0.070 0.060 0.050 0.050 0.030:
3 Gyr 0.073 0.070 0.057 0.052 0.040:
5 Gyr 0.075 0.072 0.065 0.065 0.050:

4.4 A Current Map of the Brown Dwarf Desert

The idea of the brown dwarf desert continues to evolve. The term was originally used

to describe the fact that radial velocity surveys of solar analogs detect an abundance of

extra-solar planets but rarely detect brown dwarfs, even though a brown dwarf’s higher

mass makes its detection easier. In their seminal work, Marcy & Butler (2000) found that

<1% of main sequence Sun-like stars harbor brown dwarfs. Several other studies have

since then obtained similar results for different ranges in separation, primary mass, and

system age. Oppenheimer et al. (2001) conducted the first successful search for brown dwarf

companions, discovering the T dwarf prototype GJ 229B. Their infrared coronagraphic search

of stars within 8 pc detected a single substellar object, from which they cautiously imply a

stellar/substellar multiplicity fraction of ∼1%. McCarthy & Zuckerman (2004) used Keck

coronagraphy to search 102 nearby field GKM stars at separations from 75 to 1200 AU.

They found one brown dwarf companion, and report a binary fraction of 1±1%4. Their

result agrees well within statistical uncertainties to the results of this search (Table 4.2),

aGolimowski et al. (2004b)
4Using the binomial distribution treatment employed in the NICMOS search, 1 detection out of 102

observations is equivalent to a multiplicity fraction of 1+3
−0.2%.
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suggesting a wide desert with no significant change in the substellar companion fraction from

10 to 1200 AU. Luhman et al. (2005) used HST’s Wide Field Planetary Camera 2 (WFPC2)

to survey 150 members of the young cluster IC 348 (∼2 Myr) at separations of 120−1600

AU. Of these stars, 85 were in the mass range 0.08−0.5M⊙, approximately corresponding

to the mass range for main sequence M dwarfs (Henry & McCarthy 1993). They found one

possible substellar companion to a low mass star, but note that it is not possible to ascertain

companionship due to the wide separation of this system (∼1400 AU). Based on this finding,

Luhman et al. derive an upper limit of 4% for the substellar companion fraction of low mass

stars. This result is again in very good agreement with the results reported here, suggesting

that there is little evolution in the multiplicity fraction of low mass stars after the first few

million years, and again suggesting no significant change in the substellar companion fraction

beyond 10 AU. Regarding single objects, Luhman et al. find that 14 out of 150 objects are

likely substellar based on evolutionary models (Chabrier et al. 2000). They note that the

fact that they detect ten times more isolated stars than isolated brown dwarfs in IC 348

indicates that the brown dwarf desert may not be limited to the formation of companions,

but may also extend to the formation of single objects (§4.6.2). Metchev & Hillenbrand

(2009) used adaptive optics on Keck and Palomar to survey 266 Sun-like (F5−K5) stars,

and infer a brown dwarf companion frequency of 3.2+3.1
−2.7%

5 for separations of 28 to 1590 AU.

Finally, direct imaging searches for planetary companions would be capable of detecting

brighter brown dwarfs. Masciadri et al. (2005) used VLT/NACO to search 30 young (<200

Myr) GKM stars and found no brown dwarf or planetary companions at separations larger

52σ limits.
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than 36 AU. In a similar fashion, Biller et al. (2007) used VLT and MMT to search 45 young

GKM field stars at separations of 20−40 AU, and also found no brown dwarfs. Due to

smaller sample sizes, the last two studies do not add significant constraints to the brown

dwarf desert, but their null detections are certainly in agreement with constraints set by the

larger studies.

The sum of these studies, along with the results of the HST/NICMOS search, indicate a

consistent image of a brown dwarf desert that is mostly invariant with respect to the mass

of the primary star, and which is valid for a wide range of separations ranging from 5 AU

to 1600 AU. Whether the search is sensitive to substellar companions to Sun-like stars at

intermediate to large separations (Metchev & Hillenbrand 2009), substellar companions to

low mass stars at intermediate separations (this study), or a mixture of young stars with

masses ranging from solar down to the M dwarf regime (Masciadri et al. 2005; Biller et al.

2007) the detection rate is always consistent with a stellar-substellar binary fraction on the

order of a few percent.

4.5 Is the Desert Real?

The multiplicity fraction of Sun-like stars is ∼50% (Duquennoy & Mayor 1991; Raghavan et al.

2010). The multiplicity rate for stellar companions to M dwarfs at all separations is ∼30%

(Henry & McCarthy 1990; Henry 1991; Fischer & Marcy 1992). Based on the results of this

survey (Table 4.2) and the companion searches discussed in §4.4, it is clear that stellar com-

panions outnumber brown dwarf companions by a factor &10. Does this paucity of brown
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dwarfs, however, constitute a “real desert”? A few studies (e.g., Metchev & Hillenbrand

2009; Grether & Lineweaver 2006) have suggested that the dearth of brown dwarf compan-

ions is a natural consequence of a well behaved, Salpeter-like (Salpeter 1955) universal CMF

that tends to lower multiplicities at lower mass ratios, and that a real brown dwarf desert

would only exist if the observed number of brown dwarf companions is significantly lower

than what a universal CMF would predict. In particular, Grether & Lineweaver note that

the overlap of the planetary CMF and the stellar CMF reaches a minimum at ∼0.03 M⊙,

causing the observed paucity of brown dwarf companions. In this search, we test the hy-

pothesis of a universal CMF by focusing primarily on low mass stars. As shown in Table 4.1,

the twelve M dwarf binaries detected between 5 and 70 AU have primary masses ranging

from ∼0.6 to ∼0.1 M⊙. Figure 4.5 is a plot of the masses of the primary and the secondary

components of this sample. Figure 4.5 shows that the mass ratios of detectable low mass

binaries tend to increase (i.e., approach equal mass components) as masses approach the

hydrogen burning limit, thus excluding the formation of brown dwarf secondaries. The com-

pleteness analysis (§4.1) demonstrates that this trend is not an observational selection effect.

Indeed, detecting lower mass companions is easier for intrinsically fainter primary stars, so

the selection effect works against the trend noted in Figure 4.5. Reconciling these observa-

tions with the idea of a universal CMF would require this function to be rather restricted in

the sense that it would not be a function of mass ratio, or would only be valid for Sun-like

stars. For any reasonably broad definition, it is reasonable to conclude that deviations from

a universal CMF do exist in the brown dwarf regime. The brown dwarf desert is therefore
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a reality whether one defines it in terms of total numbers or in terms of a deviation from a

trend.

Figure 4.5 Mass distribution for the binaries in Table 4.1. The horizontal dashed lines denote the hydrogen burning limit
(0.075 M⊙) and the 90% detection limits for this search assuming brown dwarf ages of 1 Gyr and 3 Gyr (Table 4.3). As the
masses of the primary components approach the hydrogen burning limit, the mass ratios tend to unity, thus implying that
brown dwarfs rarely form as secondaries. From left to right, the binaries are ordered as they appear in Table 4.1.

4.6 The CMF, the IMF, and the Big Picture

VLM binaries have a strong tendency towards high (i.e., unity) mass ratios (e.g., Burgasser et al.

2007). The effect has been demonstrated to be an intrinsic characteristic of VLM stars and
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brown dwarfs through Bayesian analysis (Allen 2007). The results of this survey (Figure

4.5) show that mass ratios tend to increase as stellar masses approach the hydrogen burning

limit, with the strong onset of nearly equal mass duplicity happening somewhere between 0.2

and 0.1 M⊙. Other studies have also suggested that the basic population properties of IMF,

CMF, and the binary separation distribution all appear to change significantly at a mass

of ∼0.1 M⊙, slightly above the hydrogen burning limit. Close et al. (2003) conducted an

adaptive optics search of 39 VLM objects with spectral types ranging from M8.0V to L0.5,

and found a mass distribution similar to the one shown in Figure 4.5 (see their Table 3).

They also probed smaller separations than our formal limit of 5 AU, and found that whereas

higher mass stars have a separation distribution peaked at 30 AU (Duquennoy & Mayor

1991), VLM binaries have a separation distribution peaked at 4 AU. Also, Bayesian analysis

of several studies (Allen 2007) demonstrates that VLM and brown dwarf binaries with sep-

arations > 20 AU are extremely rare. We note that Close et al. probed significantly smaller

separations than we did, but did not establish formal detection limits. Kraus et al. (2005)

conducted a search for VLM binaries in the Upper Scorpius OB association, and also found

results consistent with a discontinuity in the separation distribution at a mass of 0.1M⊙.

4.6.1 Isolated Objects

In an analysis of data from several open cluster studies, Thies & Kroupa (2007) demonstrate

that the observed mass distribution is incompatible with the existence of an IMF that is

monotonic about the hydrogen burning limit. They note that because stellar formation and

stellar ignition are in principle unrelated processes governed by different areas of physics,
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there is no reason to expect that the IMF discontinuity would be caused by the onset of

hydrogen burning. They therefore allow for an arbitrary overlap of the stellar and brown

dwarf components of the IMF, thus allowing for a smooth turnover. In light of the companion

mass distribution for low mass stars (Figure 4.5), new developments in the hydrodynamical

simulations of star cluster formation (Bate 2009, 2011), and new observations of young stellar

clusters (Kraus et al. 2008, 2011; Evans et al. 2012), we re-examine the nature of the IMF

discontinuity at masses close to the hydrogen burning limit.

The details of the mass function for older field objects close to the hydrogen burning

limit are difficult to quantify. The difficulty is mostly due to the lack of a robust volume

limited census of L and T dwarfs based on trigonometric parallaxes or reliable distance

estimates (errors <20%). For the M dwarfs, the situation is more clear. Recent results

from the RECONS 10 pc census indicate a minimum M dwarf space density of 0.057 pc−3

(Henry et al. 2006)6. Cruz et al. (2007) find a space density of 4.9× 10−3 pc−3 for M dwarfs

later than M7V and a lower limit of 3.8×10−3 pc−3 for L dwarfs (§2.7, Figure 2.2). Assuming

that field age (∼1−5 Gyr) brown dwarfs with masses slightly below the hydrogen burning

limit (0.075−0.055 M⊙ are predominately mid to late L dwarfs (§4.3, Table 4.3), and that

stars of spectral type M7V or later have masses .0.1 M⊙ (Henry et al. 1999; Delfosse et al.

2000), the ratio of objects with masses above 0.1 M to ∼20% below the HBMM is 6.9. The

shape of the M dwarf distribution in the RECONS 10 pc census corresponds broadly to the

60.059 pc−3 for epoch 2012.0. See www.recons.org for the latest numbers and analysis. Comparison of
the 10 pc sample with the 5 pc sample indicates that the 10 pc M dwarf sample is ∼70% complete. We note,
however, that an analysis of the RECONS sensitivity limits indicates that the assumption of a representative
M dwarf sample within 5 pc may be significantly biased by statistics of small numbers.
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distribution of the NICMOS sample, (Figure 3.1), with the drop-off happening at around

spectral type M6V, corresponding to ∼0.1 M⊙. Even if the actual density for L dwarfs

is a few times greater than the lower limit of Cruz et al. (2007), there is still a significant

difference in the number of stars versus brown dwarfs. This analysis is in agreement with the

recent WISE results, which estimate that the lower limit of the star to brown dwarf ratio in

the solar neighborhood is six to one, and that in the final WISE count stars will still greatly

outnumber brown dwarfs (Kirkpatrick et al. 2012).

4.6.2 Testing Formation Scenarios

What do these apparent discontinuities in the IMF and the CMF tell us about the validity of

several proposed scenarios of VLM star and brown dwarf formation? We review the principal

formation scenarios following the discussion in the review article of Luhman (2012), and then

evaluate how well each of these scenarios explains the general properties of the IMF and the

CMF noted above.

Core Fragmentation. In this scenario, collapsing gas in a molecular cloud forms denser

cores that then fragment into multiple cores of different masses. Subsequent accretion is

dominated by the more massive cores and the less massive cores eventually form brown

dwarfs (Bonnell et al. 2008).

Core Ejection. Some protostellar objects are ejected from a star forming region via

dynamical interactions with other objects or due to the natural velocity dispersion within a

cluster. The ejection stops the accretion process (Reipurth & Clarke 2001).
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Photoionization. Radiation from a nearby hot O or B star dissipates the inter-stellar

medium in the vicinity of a low mass accreting core, thus halting the accretion process

(Hester et al. 1996; Whitworth & Zinnecker 2004).

Disk Instability. In a manner similar to planet formation, localized instabilities in an

accretion disk around a star cause some gas to collapse and form a proto-stellar core (e.g.,

Thies et al. 2010; Stamatellos et al. 2011)

In addition to these four processes, Bate (2011) notes that hydrodynamic cloud collapse

simulations (Bate 2009, 2011) are in good agreement with the stellar IMF and stellar CMF,

but overproduce the number of brown dwarfs unless radiative feedback is incorporated into

the model (Bate 2011). The last model produces a cluster of stars and brown dwarfs whose

statistical properties are very similar to those of observed young clusters, suggesting that

radiative feedback is indeed an important mechanism in brown dwarf formation. A significant

problem with this idea is the lack of a clear mechanism through which feedback is ignited only

in stellar objects. At ages of a few Myr, the vast majority of an object’s luminosity comes

from the release of internal gravitational energy, so the onset of hydrogen burning would have

a negligible effect on overall luminosity (Chabrier & Baraffe 1997). Also, while studies such

as those by Jayawardhana et al. (2003), Bouy et al. (2008), and Comerón et al. (2010) show

that there is some evidence for late accretion that is still happening at the time of hydrogen

ignition around 3−5 Myr (Chabrier & Baraffe 1997), the bulk of accretion happens in the

first million years, where stellar and substellar objects are virtually indistinguishable.

The relevant population properties for VLM stars and brown dwarfs described in §§4.6,
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4.6.1, and Chapter 2 can be summarized as follows:

1. Stars significantly outnumber brown dwarfs.

2. There is evidence for a discontinuity in the IMF, CMF and other companion properties

at masses close to the HBMM.

3. Stellar/substellar binaries are rare regardless of the characteristics of the more massive

component.

4. Substellar binaries tend to have high mass ratios.

5. Wide separation substellar binaries are rare.

Core fragmentation has the potential of producing objects over a wide range of masses,

both stellar and substellar. If accretion continues after the initial fragmentation and is then

halted by radiative feedback, as proposed by Bate (2011), it could explain why there exist

more stars than brown dwarfs. However, core fragmentation offers limited insights into the

binary properties, with no apparent mechanism for favoring high mass ratio binaries and

preventing the creation of stellar/substellar pairs. Disk instability is generally thought to

produce lower mass companions in the planetary mass range. Because the matter available

in an accretion disk is roughly proportional to the mass of the accreting star, brown dwarf

formation through disk instability would imply that high mass stars are more likely to

have brown dwarf companions. This assertion is refuted by the invariability of the brown

dwarf desert argued in §4.4. Core ejection and photoionization are both mechanisms where

brown dwarf formation is influenced primarily by environmental factors. This consideration
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would explain why high mass ratio binaries are more common amongst brown dwarfs, as the

mechanism halting accretion would have the same effect on both components of the binary.

The potential for dynamical disruption during core ejection would also explain why close

separation binaries with higher binding energies are more common. However, the ideas of

core fragmentation and core ejection have problems of their own. There is no evidence for

the spatial segregation of brown dwarfs that would happen as a consequence of core ejection.

Luhman (2012) also note that the mass function of brown dwarfs in young clusters does not

appear to be altered by the presence of hot O stars, thus providing evidence against the

photoionization scenario.

The above discussion shows that while the binary properties of VLM stars and brown

dwarfs may be explained by formation through core ejection or photoionization, a look

at the broader implications of the proposed mechanisms of VLM star and brown dwarf

formation still leads to largely inconclusive results. The results discussed in this chapter

place constraints in the theory in the sense that any viable candidate theory of star and

brown dwarf formation must now explain the existence of a brown dwarf desert that exists

even at relatively high mass ratios in the case of M star primaries. However, substantial

questions regarding formation still exist, and the available data are still not sufficient to

clearly differentiate amongst the proposed models for brown dwarf and VLM star formation.
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CHAPTER 5

The HLIMIT Survey − Overview and Observations

This chapter as well as Chapter 6 are based on “The Solar Neighborhood XXXII: The

Hydrogen Burning Limit” (Dieterich et al. 2014).

5.1 Introduction

The first comprehensive stellar structure and evolution models for the low mass end of the

main sequence were published in the late 20th century (e.g., Burrows et al. 1993; Baraffe et al.

1995, §2.3). While the predictions of these models are widely accepted today, they remain

largely unconstrained by observations. The problem is particularly noteworthy when it

comes to the issue of distinguishing the smallest stars from the substellar brown dwarfs.

While the internal physics of stars and brown dwarfs is different, their atmospheric properties

overlap in the late M and early L spectral types, thus making them difficult to distinguish

based on photometric and spectroscopic features alone. One test used to identify substellar

objects − the lithium test (Rebolo et al. 1992)− relies on the fact that lithium undergoes

nuclear burning at temperatures slightly lower than hydrogen, and therefore should be totally

consumed in fully convective hydrogen burning objects at time scales much less than their

evolutionary time scales. Detection of the LiI λ6708 line would therefore signal the substellar

nature of an object. This is a powerful test, but it fails us when we most need it. While

evolutionary models predict the minimal stellar mass to be anywhere from 0.07M⊙ to 0.08M⊙

(§6.7.3), the lithium test only works for masses .0.06M⊙ due to the lower mass at which

core temperatures are sufficient to fuse lithium. Other tests are discussed in 5.1.1.
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The models for low mass stars and brown dwarfs in current usage (Burrows et al. 1993,

1997; Baraffe et al. 1998; Chabrier et al. 2000; Baraffe et al. 2003) predict the end of the

stellar main sequence at temperatures ranging from 1550−1750K, corresponding roughly

to spectral type L4. These models have achieved varying degrees of success, but as we

discuss in §6.7.3, are mutually inconsistent when it comes to determining the properties

of the smallest possible star. The inconsistency is not surprising given that none of these

decade-old evolutionary models incorporates the state-of-the-art in atmospheric models, nor

do they account for the recent 22% downward revision in solar abundances (Caffau et al.

2011), which are in agreement with the results of solar astero-seismology1.

Over the last ten years, few changes were made to evolutionary models for VLM stars

and brown dwarfs in large part because the models provide predictions that are not directly

observable. Whereas an atmospheric model can be fully tested against an observed spectrum,

testing an evolutionary model requires accurate knowledge of mass, age, and metallicity as

well as an accurate atmospheric model that serves as a boundary condition.

The problem of understanding the stellar/substellar boundary can essentially be formu-

lated by posing two questions. The first one is: “What do objects close to either side of the

stellar/substellar boundary look like to an observer?” The second question is: “What are

the masses and other structural parameters of objects on either side of the stellar/substellar

boundary?” While it is the second question that usually gets the most attention, we note

that any attempt to determine masses at the stellar/substellar boundary assumes an inher-

1A review of the history of revisions to solar abundances, including issues related to solar astero-
seismology, is given in Allard et al. (2013).
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ently model dependent (and therefore possibly flawed) answer to the first question. What is

needed is an observational test that relies as little on evolutionary models as possible. Prior

to describing the methods used to attack the problem in this study, we describe several pos-

sible ways of addressing the first question with minimal reliance on modeling, and highlight

each test’s strengths and weaknesses.

5.1.1 Possible Tests for Detecting the Stellar/Substellar Boundary

Lithium. The Lithium test is the only practical test in current usage for detecting an object’s

stellar or substellar nature. As already stated, it relies on the fact that most brown dwarfs

do not reach core temperatures high enough to burn lithium. The fully convective nature of

VLM stars and brown dwarfs assures that any lithium in the photosphere is depleted at time

scales much shorter than the evolutionary time scale. The test has the advantage of being

easy to apply to individual objects through spectroscopic detection of the LiI λ6708 line.

It has the major disadvantage that it does not work for brown dwarfs more massive than

∼0.06 M⊙, which are capable of burning lithium. It is therefore not suitable for pinpointing

the stellar/substellar boundary, which presumably lies between 0.07 and 0.08 M⊙. The

Li test also does not work well for young objects with ages . 50 Myr because the LiI

λ6708 line is gravity sensitive and becomes weaker at the lower gravities of younger objects

(Kirkpatrick et al. 2006, 2008). It is also true that depending on the object’s mass it may

take up to several Myr for the supply of primordial Li to be depleted through nuclear burning;

however, for brown dwarfs this time scale is shorter than the time scale for Li detectability

due to surface gravity.
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Dynamical Masses of Stellar/Substellar Binaries. Short period binaries offer the

most powerful and accurate empirical way of measuring mass. This test relies on detect-

ing a nearly equal mass binary in which the components lie on opposite sides of the stel-

lar/substellar boundary. If the binary is old enough (few Gyr), then the substellar component

will have cooled as a brown dwarf, and the small difference in mass between the pair will

correspond to a large difference in luminosity. This test is simple in principle, but it presents

several observational challenges. Due to the natural dispersion in the HBMM caused by

different metallicities within the nearby stellar population, several binaries would need to

be observed. The constraints on the HBMM would only be as good as the mass difference

between the binary components, and finding a pair in which the components are indeed very

close to the HBMM and yet on opposite sides of the boundary may prove difficult. Finally,

it would be necessary to know the mass ratio of the binary pair. Determining the mass ratio

can only be done through precise radial velocity measurements or in the case of astrometric

binaries, in which the motion of the components is measured relative to the background of

distant stars.

Breakdown of the Mass−Luminosity Relation. The MLR for stars is a mostly

monotonic function where luminosity decreases as a function of decreasing mass. Assuming

a large enough sample of VLM star and brown dwarf binaries with dynamical mass mea-

surements, it is in principle possible to note where a monotonic function ends and where

the Mass-Luminosity-Age Relation (MLAR) for brown dwarfs causes a broad distribution

of masses to have the same luminosity. The problem with this method is that as of now
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we simply do not have a large enough sample of binaries on which to carry it out. One

would also need a manner to distinguish young brown dwarfs of late M and early L spectral

type that overlap the latest main sequence stars. If luminosity and effective temperature are

known, this distinction could be done on the basis of radius (§5.6).

Gap in the Luminosity Function. Because high mass brown dwarfs are constantly

cooling, their luminosity is comparable to that of VLM stars for only a small fraction of their

lives, whereas VLM stars retain their main sequence luminosity for a time longer than the

current age of the Universe. The transient nature of high mass brown dwarfs then causes a

dearth of objects at luminosities immediately fainter than the minimum stellar luminosity.

The result is apparent in the theoretical LFs of Burgasser (2004) and Allen et al. (2005),

where the relative paucity of early to mid L dwarfs is attributed to the onset of the brown

dwarf cooling curve. From the predictions of those works, it is not clear if the gap would

be well-defined enough to allow for a clear determination of the end of the main sequence.

Rigorous application of this test requires a volume complete sample, but it has the advantage

of not needing dynamical masses. This topic is further explored in §6.7.1.

The Radius Test. Because brown dwarfs are supported by electron degeneracy pressure,

their Radius-Mass Relation (RMR) is different than that of stars. Whereas stars decrease in

radius with decreasing mass, brown dwarfs show a slight increase in radius as mass decreases.

As described in Chabrier & Baraffe (2000), the radius of field age brown dwarfs of all masses

can be approximated by

R = R0m
−1/8
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where all quantities are entered in solar units and R0 ∼ 0.06R⊙ for field aged objects. The

resulting relation has a minimum radius for masses just below the HBMM (Chabrier et al.

2009; Burrows et al. 2011). The method has the advantage that while the exact value for the

minimum radius is model dependent, the existence of a local minimum in the radius trend

for the most massive brown dwarfs is a matter of basic physics and is universally accepted.

The radius of an individual brown dwarf also decreases as the object ages, with the minimum

value not attained until the brown dwarf is several billion years old and has entered the T

dwarf luminosity regime. The result of the mass and age trends in brown dwarf radii means

that any brown dwarf that still shines with luminosity comparable to that of VLM stars in

the Galactic disk population will have a radius larger than that of the smallest stars. For

a large enough sample of objects spanning the stellar/substellar boundary, the end of the

stellar main sequence should be followed by a discontinuity in the luminosity-radius trend as

older stars are followed by younger and less massive brown dwarfs. After the discontinuity,

the slope of the relation should also change from positive to negative because less luminous

objects tend to be less massive objects if one assumes a small age dispersion.

The radius test is the primary method used in this study to determine the properties of

the stellar/substellar boundary. Determining an object’s radius requires good knowledge of

its Spectral Energy Distribution (SED), a trigonometric parallax, and an atmospheric model

that is reliable enough to yield the object’s effective temperature based on the morphology of

its SED. In the remainder of this chapter we discuss the observations and analysis techniques

used to obtain reliable measures of luminosity, temperature, and radius for a large sample
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of objects. The analysis of the resulting radius trends is done in Chapter 6.

Table 5.3 at the end of this chapter lists the observed sample as well as all observed

properties. Table 6.3 in Chapter 6 lists the derived properties. Both tables use the same

scheme in listing an ID number for each object. These ID numbers are used as reference in

several figures. Dieterich et al. (2014) contains a machine-readable table that has all columns

of Tables 5.3 and 6.3 as well as 2MASS and WISE photometry.

5.2 The Observed Sample

The goal of the target selection was to obtain an observing list that samples the color

continuum between spectral types M6V to L4, corresponding to V − K ranging from 6.2

to 11.8, for the nearby Galactic disk population. Targets with known spectral types were

selected from the literature, with at least eight targets in each spectral subclass, for a total

of 82 targets. Because the differences between stellar and substellar objects become more

pronounced at ages > 1 Gyr, we avoided objects with known youth signatures. All targets

have original distance estimates within 25 pc, and are located south of declination +30◦.

This declination requirement makes all targets observable from CTIO. Of these 82 targets,

26 have previously established trigonometric parallaxes. The remaining 56 were placed on

the CTIOPI parallax observing list. In this study we report new trigonometric parallaxes

for 37 targets and new VRI photometry for all 63 targets that either have trigonometric

parallaxes from the literature or have new trigonometric parallaxes reported here. Parallax

observations for 19 targets are still ongoing and will be described in a future publication.
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Figure 5.1 is a histogram showing the spectral type distribution of the observed sample for

this study. There are more M dwarfs than L dwarfs in Figure 5.1 because more M dwarfs had

trigonometric parallaxes from the literature. Once parallax observations for the 19 ongoing

targets are finished the spectral type distribution will become nearly even.

Figure 5.1 Spectral type distribution for the observed sample. M dwarfs are more heavily sampled because most M dwarfs
already had trigonometric parallaxes at the beginning of the study. Several L dwarf parallax measurements are still in progress.

5.3 Photometric Observations

VLM stars and brown dwarfs have traditionally been studied in the near infrared where

they emit most of their flux. However, as discussed in detail in §5.5, optical photometry is

essential for determining the effective temperatures and the bolometric fluxes of these very

red objects. We obtained VRI photometry for all targets in the sample using the CTIO

0.9m telescope for the brighter targets and the SOAR Optical Imager (SOI) camera on the

Southern Astrophysics Research (SOAR) 4.1m telescope for fainter targets. SOAR obser-

vations were conducted between September 2009 and December 2010 during six observing
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runs comprising NOAO programs 2009B-0425, 2010A-0185, and 2010B-0176. A total of 17

nights on SOAR were used for optical photometry. Table 5.3 indicates which telescope was

used for each target. The division between the 0.9m telescope and SOAR fell roughly along

the M/L divide. To ensure consistency, 28 targets were observed on both telescopes.

Essentially the same observing procedure was used for both photometry programs. After

determining that a night was likely to be entirely cloudless in the late afternoon, three or four

photometric standard fields were chosen and an observing schedule was constructed so that

each field was observed at three different airmasses, typically around 2.0, 1.5, and the lowest

possible airmass given the standard field’s declination. We used the photometric standards

compiled by Arlo Landolt (Landolt 1992, 2007, 2009) as well as standards from Bessel (1990)

and Graham (1982). In each night, at least two standards were red standards with V − I >

3.0. Details of the transformation equations used to derive the nightly photometric solution

from the observation of photometric standards are given in Jao et al. (2005).

When calibrating photometry, it is advisable that the range of colors of the photometric

standards should be greater than the range of colors of the science targets. In other words,

it is desirable to have photometric standards that are redder than the reddest science target

and bluer than the bluest science target. The red end of this requirement creates problems

for observing our sample because a list of red enough standards has not been compiled yet.

The closest match are the unpublished RECONS very red standards used for photometry of

late M dwarfs in the CTIOPI program. The standards were selected on the basis of their

astrometric observations showing very little variability (.0.005 mag) over a period of several
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years when compared to the field of background stars (§6.5). Currently these standard stars

are GJ 1061 (V − I = 3.63), LHS 1723 (V − I = 3.02), GJ 406 (V − I = 4.12), GJ 644C

(V − I = 4.61), SCR 1845-6357AB (V − I = 4.94), and GJ 876 (V − I = 2.78). When

observing photometry, we picked the reddest possible star from this list depending on the

time of the year. Even with these new standards, there is still a significant difference between

the reddest standard and the V −I ∼ 6 typical of an L4 dwarf. To test what effect the lack of

redder standards had on the photometry of L dwarfs, we observed several objects more than

once (Table 5.3) using different sets of standards of varying deficiency in their redness. The

result was that these different epochs using different standards agreed to within the typical

errors of our photometry. We therefore conclude that, while not optimal, observing L dwarfs

with standards no redder than V − K ∼ 3 produces acceptable results. We note that the

photometric solution derived from the photometric standards is essentially a measurement of

atmospheric extinction as a function of wavelength, and not as a function of color. In other

words, the CCD detector cannot tell the difference between a photon that passes through

the blue end of a given filter’s range and a photon that passes through the red end of the

same filter. In the same way, two photons of a particular wavelength obviously produce the

same instrumental signature even if one comes from a very red object and the other comes

from a very blue object. What does change is the degree of atmospheric extinction within

different ends of the wavelength range of a given filter, and observing standards of colors

similar to the science targets is meant to correct for that difference; one would like the shape

of the SED of the standard and the science target to be similar within the wavelength range
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of the filter in question. In this sense, it seems that the combination of SED slope within

the wavelength range of the optical filters and the differential atmospheric extinction within

those ranges were not sufficiently different from the V − K ∼ 3 standards to the V − I ∼ 6

science targets to cause appreciable problems.

After flat fielding, bias subtraction, and mosaic integration in the case of SOAR/SOI im-

ages, we performed aperture photometry using the IRAF apphot package. Landolt standards

are reduced using an aperture 7′′ in radius. Ideally, we would perform aperture photometry

on our targets using the same size aperture (7′′) as Landolt used to compile the standards we

are using, but the faintness of our targets required us to use a smaller aperture for two rea-

sons. First, the depth of our exposures (as faint as V ∼ 24 at SOAR and V ∼ 21 at the CTIO

0.9m, see §6.1) means that the science target is often not more than 7′′ apart from another

resolved source. Second, the signal-to-noise error associated with a photometric observation

is a combination of the Poisson error and the sky subtraction error. The latter’s contribution

is proportional to the area of the photometric aperture and is particularly problematic in

deep exposures where the sky annulus may contain diffuse background sources. It therefore

makes sense to use a smaller aperture and apply an aperture correction based on the curve

of growth of bright stars in the same exposure. We used a 3′′ aperture with an aperture

correction to 7′′. The uncertainty associated with this aperture correction depends strongly

on the seeing, but is typically on the order of 1% to 3%. The final photometric error is the

sum in quadrature of the signal-to-noise error, the error due to the aperture correction, and

the error from the nightly photometric solution, which is typically on the order of 1% to 2%.
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Each photometric night had at least two targets in overlap with another night in order to

check the validity of the the night’s photometric solution. Optical variability is discussed in

§6.5, where it is shown that the variability is usually less than the formal uncertainty in the

photometry, thus justifying the use of only one epoch of photometry in cases where it was

not possible to obtain a second epoch due to time constraints on SOAR.

Several different UBVRI photometric systems are in current usage. While the photometry

taken on the CTIO 0.9m telescope used filters in the Johnson-Kron-Cousins system, data

taken on SOAR used Bessell filters. Descriptions of both systems, as well as conversion

relations, are given in Bessell (1995). The V filter is photometrically identical between both

systems. The R and I filters have color dependent differences that reach a few percent in

the color regime explored by Bessell (1995), which considered stars as red as (V − R) = 1.8

and (V − I) = 4.0. The targets in this study are significantly redder, with (V − I) as red as

5.7. In §6.1 we derive new relations relevant to the very red regime considered in this study.

The values listed in Table 5.3 are on the system used on each telescope.

5.4 Astrometric Observations

The Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI); (Jao et al.

2005; Henry et al. 2006) is a large and versatile astrometric monitoring program targeting

diverse types of stellar and substellar objects in the solar neighborhood. Observations are

taken using the CTIO 0.9m telescope and its sole instrument, a 2048×2048 Tektronix imaging

CCD detector with a plate scale of 0.401′′ pixel−1. We use the central quarter of the CCD
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chip, yielding a 6.8′×6.8′ field of view. Details of the observing procedures and data reduction

pipeline are given in Jao et al. (2005). A brief description of the aspects most relevant for

the observation of very red and faint targets is given here.

Each target was typically observed for five “evening” epochs (i.e., before the midpoint of

a given night) and five “morning” epochs over the course of at least two years. Observations

were typically taken in sets of three consecutive 600 s exposures always within ±60 minutes

of target transiting the meridian, and in most cases within ±30 minutes of meridian transit.

This restriction in hour angle means that the target is always observed very close to its lowest

possible airmass, which minimizes the effects of differential atmospheric refraction. All but

one target were observed in the I band, where their optical spectrum is the brightest and also

where atmospheric refraction is minimized. The sole exception is GJ 1001 A-BC, for which

the parallax of the A component was measured in the R band to avoid saturation on the

CCD. The long exposures caused the fields to be rich with background stars, which greatly

facilitated the selection of parallax reference stars. In most cases we were able to setup the

parallax field with the ideal configuration of ∼10 reference stars symmetrically distributed

around the science target. Care was taken to position the reference fields using the same

pixel coordinates for all epochs. Our experience shows that this consistency of positioning

the reference fields helps reduce the final parallax error faster, but is not absolutely required.

There have been instances when a mis-aligned epoch was added to the parallax reduction,

and having an additional epoch, although not perfectly positioned, still reduced the parallax

error. Such instances were considered on an individual basis.
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VRI photometry (§5.3) of the reference field was used to transform the relative parallaxes

into absolute parallaxes using photometric distance relations. This transformation accounts

for the fact that the parallax reference stars are not located at infinite distances and therefore

have a finite, albeit much smaller, parallax. Any original reference star later found to be

closer than 100 pc was discarded. The VRI photometry of the reference field and the science

star was also used to correct for small shifts in the apparent positions of the stars due to

atmospheric differential color refraction.

5.5 Methodology for Calculating Effective Temperature

The following two sections describe the methodology for determining effective temperature

and luminosity using computer procedures written in IDL. All IDL codes are included in the

appendix of this dissertation.

Determining the effective temperatures (Teff)2 of M and L dwarfs has traditionally been

difficult due to the complex nature of radiative transfer in cool stellar atmospheres. The

task is particularly challenging in the L dwarf regime, where inter-phase chemistry between

solid grains and the same substances in the gas phase becomes relevant. Significant progress

has occurred recently with the publication of the BT-Settl family of model atmospheres

(Allard et al. 2012, 2013). The BT-Settl models are the first to include a comprehensive

cloud model based on non-equilibrium chemistry between grains and the gas phase and the

2The effective temperature (Teff) of a surface is defined as the temperature at which a perfect blackbody
would emit the same flux (energy per time per area) as the surface in question according to the Stephan-
Boltzmann law: F = σSBT 4. This quantity often differs from the stellar atmosphere’s actual temperature,
which is a function of optical depth as well as other factors.
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rate of gravitational settling of solid grains. They have also been computed using the latest

revised solar metallicities (Caffau et al. 2011). The authors (e.g., Allard et al. 2012) have

demonstrated unprecedented agreement between observed M and L spectra and the BT-Settl

model atmospheres.

We determined Teff for each object in our sample by comparing observed photometric

colors to synthetic colors derived from the BT-Settl model grid using custom made IDL

procedures 3. Our procedure exploits the fact that synthetic colors can be computed from

synthetic spectra and those colors can then be directly compared to observed colors. How

well the synthetic colors match the observed colors is then a measure of how well the input

properties of a given synthetic spectrum (Teff , log g, and [M/H ]) match the real properties

of the object in question. The best matching Teff can then be found by interpolating Teff

as a function of the residuals of the color comparison (observed color − synthetic color) to

the point of zero residual. The technique can be applied independently to each available

photometric color, and the standard deviation of the resulting ensemble of Teff values is the

measure of the uncertainty in Teff .

In our implementation of this technique, we combined our VRI photometry (Bessel sys-

tem) with 2MASS JHKs (Skrutskie et al. 2006) and WISE W1, W2, and W3 photometry

(Wright et al. 2010) to derive a total of 36 different colors for each object covering the spec-

tral range from ∼0.4µm to ∼16.7µm4. We then calculated the same 36 colors for each

3A thorough review of photometric quantities, terminology, and procedures for deriving synthetic colors
is given in the appendix of Bessell & Murphy (2012).

4 We did not use the WISE W4 band centered at ∼22µm because it produces mostly null detections and
upper limits for late M and L dwarfs.
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spectrum in the BT-Settl model grid using the photometric properties for each band listed

in Table 5.1.

Table 5.1: Photometric Properties of Individual Bands

Band Blue Limit a Red Limit a Effective Isophotal λ Mag. Zero Point Reference
µm µm µm photon s−1 cm−2

V 0.485 0.635 0.545 1.0146×1011 Bessell & Murphy (2012)
R 0.554 0.806 0.643 7.1558×1010 Bessell & Murphy (2012)
I 0.710 0.898 0.794 4.7172×1010 Bessell & Murphy (2012)
J 1.102 1.352 1.235 1.9548×1010 Cohen et al. (2003)
H 1.494 1.804 1.662 9.4186×109 Cohen et al. (2003)
Ks 1.977 2.327 2.159 4.6692×109 Cohen et al. (2003)
W1 2.792 3.823 3.353 1.4000×109 Jarrett et al. (2011)
W2 4.037 5.270 4.603 5.6557×108 Jarrett et al. (2011)
W3 7.540 16.749 11.560 3.8273×107 Jarrett et al. (2011)

For each color, we then tabulated the residuals of (observed color − synthetic color) as a

function of the synthetic spectrum’s temperature. The residuals are negative if the synthetic

spectrum’s temperature is too cold, approach zero for spectra with the right temperature, and

are positive for models hotter than the science object. For each color, we then interpolated

the residuals as a function of temperature to the point of zero residual. The temperature

value of this point was taken as the object’s effective temperature according to the color

in question. We then repeated the procedure for all 36 color combinations, thus providing

36 independent determinations of Teff . The adopted Teff for each object is the mean of the

Teff values from each color. The uncertainty in Teff is the standard deviation of the values

used to compute the mean. After performing this procedure we noted that the majority of

colors produced Teff results that converged in a Gaussian fashion about a central value, while

other colors produced outliers that were a few hundred Kelvin away from the Gaussian peak.

a10% transmission normalized to band’s peak transmission
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Further inspection showed that colors for which the bluest band was an optical band (VRI)

were producing the convergent results while colors in which both bands were infrared bands

tended to produce erratic values with no apparent systemic trend. We therefore performed

the calculations a second time using only the colors that had the VRI bands as the bluest

band and excluding I − J , which also did not converge well, for a total of twenty colors.

Occasionally, a color combination still produced an outlier at Teff >> 2σ from the adopted

value. These outliers were excluded as well; however, the majority of objects had their

effective temperatures computed using all twenty colors. The fact that none of the colors

composed of infrared bands alone had good convergence emphasizes the need to include

optical photometry when studying VLM stars and brown dwarfs. Most likely, the reason for

the non-convergence of colors that do not involve an optical band is due to the smaller effect

that temperature has on the relative flux between two bands when both bands are close to

the SED’s peak flux. Examination of color-magnitude diagrams with the I − J color also

showed a degenerate sequence where the same colors corresponds to a wide range of absolute

magnitudes.

Figure 5.2 shows the graphical output of the procedure for determining Teff for the case of

DENIS J0751-2530 (L2.5, ID #21). The families of vertically oriented small dots represent

the residuals for the color matches between the synthetic spectra and the actual observed

colors. Each vertical grouping of small dots corresponds to a synthetic spectrum with Teff

given in the horizontal axis and contains one dot for each color comparison. As tempera-

ture approaches the actual effective temperature of DENIS J0751-2530 the residuals become
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smaller and less dispersed. If the models were a perfect representation of the SED of DENIS

J0751-2530 all colors would converge to a single point when interpolated to zero residual.

Because the models and the procedure are not perfect, each color interpolates to a different

temperature at the point of zero color residual. The mean and the standard deviation of the

Teff spread from interpolating the several colors to the point of zero residual is taken as the

effective temperature and its uncertainty. The short vertical lines represent the mean value

before (dashed lines) and after (dot-dashed lines) the exclusion of R − J . The long dashed

lines represent the 1σ uncertainty.

The model grid we used was a 3-dimensional grid with a Teff range from 1300K to 4500K

in steps of 100K, log g range from 3.0 to 5.5 in steps of 0.5 dex, and metallicity, [M/H ], range

of −2.0 to 0.5 in steps of 0.5 dex. The procedure was repeated for each different combination

of log g and [M/H ]. The final adopted Teff was the one from the combination of gravity and

metallicity that yielded the lowest Teff dispersion amongst the colors. As expected for VLM

stars and brown dwarfs in the solar neighborhood, the vast majority of objects had their best

fit effective temperatures at log g = 5.0 and [M/H ] = 0.0. The color−Teff interpolations

often did not converge for grid points where log g or [M/H ] was more than 1.0 dex away

from the final adopted value.
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Figure 5.2 Effective temperature calculation for the L2.5 dwarf DENIS J0751-2530. The small dots represent the residuals of the color comparisons based on
synthetic spectra at different temperatures. Interpolation to the points of zero residual yield the effective temperature. The long vertical lines denote the 1σ dispersion
before and after the exclusion of outliers. See text for discussion.
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5.6 Methodology for Calculating Luminosity and Radius

The IDL procedure for determining effective temperatures also indicates which model spec-

trum in the BT-Settl grid provides the overall best fit to the observed photometry. We used

the indicated best fit spectrum as a template for an object’s SED in order to calculate an

object’s luminosity. Because the model spectra are spaced in a discrete grid, and because

no model spectrum can be expected to provide a perfect match to observations, significant

differences may still remain between the best fit synthetic spectrum and the real SED. We

devised an iterative procedure that applies small modifications to the chosen SED template

in order to provide a better match to the photometry. We first calculated synthetic photom-

etry from the SED template for all nine bands listed in Table 5.1 using a procedure identical

to the one used for calculating synthetic colors for the purpose of Teff determination. We then

did a band by band comparison of the synthetic photometry to the observed photometry and

computed a corrective flux factor by dividing the flux corresponding to the observed photom-

etry by the synthetic flux. Next, we paired the corrective flux factors to the corresponding

isophotal effective wavelength for each band and fit those values to a 9th order polynomial

using the IDL function poly fit, thus creating a continuous corrective function with the same

wavelength coverage as the SED template. While it may seem unusual to fit nine bands of

photometry to a 9th order polynomial, we note that the purpose of the fit is not to follow the

general trend in the data, but rather to provide corrections to each individual band while

still preserving the continuity of the SED. It therefore makes sense to use a function with the

same order as the number of data points. To facilitate computations, poly fit was run on a
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logarithmic wavelength scale that was then transformed back to a linear scale. The original

SED template was then multiplied by the corrective function and the process was iterated

until residuals for all bands fell below 2%. Because the W3 band is much broader than the

other bands, two additional points were used to compute the corrective function at the blue

and red ends of the band as well as at the isophotal wavelength. Figure 5.3 describes the

process graphically. The first iteration typically produced mean color shifts of 0.1 to 0.25

magnitudes, depending on how well the real SED of a given object matched the closest point

in the spectral template grid.
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(a) (b)

(c)

Figure 5.3 SED calibrations for (a) LHS 3003 (M7V), (b) 2MASS J1501+2250 (M9V) and (c) 2MASS J2104-1037 (L3). The corrective polynomial functions are
shown by dashed lines and are fits to the corrective factors shown by plus signs. In the first two cases the polynomial generated in the first iteration stands out at
the bottom of the graph due to the flux mismatch caused by the distance difference between the object’s real distance and the distance at which the SED template
was calculated. The first iteration is too close to the wavelength axis to be noticeable in (c). The following iterations then produce corrective functions that differ
only slightly from a flat 1.0 function and perform a “fine tuning” of the modifications caused by the first iteration. Both the original SED template and the final fit
are plotted normalized to 1 at their maximum values. In the cases of 2MASS J1501+2250 and 2MASS J2104-1037 the end result is an SED slightly redder than the
template. The template used for LHS 3003 was a very good fit and the resulting SED almost entirely overlaps the initial template. Table 5.2 lists the cumulative
correction factors applied to each band for the three objects in this figure.



96

Table 5.2: Corrective Factors for SEDs in Figure 5.3a

Object Iterations V R I J H Ks W1 W2 W3

LHS 3003 22 0.865 0.917 0.927 0.952 1.000 1.044 1.042 1.002 0.711
2MASS J1501+2250 3 1.144 1.037 0.986 0.911 1.000 1.113 1.203 1.201 1.032
2MASS J2104-1037 3 1.031 1.066 1.028 0.931 1.000 1.033 0.842 0.724 1.075

The BT-Settl models are published with flux units as they appear at the stellar surface.

These are very high fluxes when compared to observed fluxes on Earth. To facilitate compu-

tations the model spectra were first normalized to a value that is comparable in magnitude

to the observed photometric fluxes that are used to calibrate the spectrum. Given the range

of magnitudes of the observed objects, we found that normalizing the model spectra so that

their bolometric flux is 10−10erg s−1 cm−2 works well. The first iteration corrected for the

bulk of the flux mismatch between the real target and this arbitrary normalization, thus

causing a much larger correction than the subsequent iterations. The number of iterations

necessary for conversion varied greatly, ranging anywhere from three to twenty or more.

Table 5.2 shows the overall corrective factor for each band for the three examples shown in

Figure 5.3, as well as the number of iterations that were necessary. The flux factors in Table

5.2 were normalized to 1.000 at the H band for ease of comparison. To check that the correc-

tive polynomial approach was producing consistent results, we computed the luminosities for

the objects listed in Table 5.2 using 9th order polynomials as well as 8th order polynomials.

The results of dividing the luminosity obtained using the 8th order polynomials by that ob-

tained using 9th order polynomials were 1.00052, 1.00077, and 0.99451 respectively for LHS

aAll values are normalized to 1.000 in the H band.
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3003, 2MASS J1501+2250, and 2MASS J2104-1037. The uncertainties associated with the

adopted 9th order solution are 3.08%, 1.91%, and 6.97% respectively for LHS 3003, 2MASS

J1501+2250, and 2MASS J2104-1037. This test shows that so long as the polynomials used

are of high enough order, varying the order of the corrective polynomial causes changes to

the resulting luminosities that are well within the formal uncertainties.

The uncertainty in the final flux under the SED was calculated as follows and combined

the uncertainty associated with the photometry used to calibrate the SED to the uncertainty

generated by the SED calibrating procedure. The SED was divided into nine wavelength

ranges corresponding to each of the nine photometric bands. After the iterative process

was complete, the flux under eache SED region was multiplied by the fractional uncertainty

of the photometry in the corresponding band. The results of this calculation were then

summed so that the uncertainty contributed by the photometric uncertainty in each band

was proportional to the fractional flux covered by that band. To account for the uncertainty

in the SED calibrating procedure, the flux corresponding to each band was multiplied by the

factional residual of the final SED fit to that band. This fractional residual is the difference

between the observed photometry and the synthetic photometry from the final SED fit.

Because we required the polynomial corrective process to iterate until this number fell below

2% for all bands, the uncertainty associated with the fitting process is never more than 2%

of the total flux of the SED. The uncertainties due to photometry and due to the residuals

in the SED fit were then summed in quadrature to provide the final uncertainty. Due to

the fact that most of the SED’s flux is in the near infrared for the objects in question, the
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photometric uncertainty was dominated by the 2MASS uncertainties in J , H , and Ks. The

fit uncertainty’s final contribution was often small compared to the photometric uncertainty

because the worst fits (i.e., the 2% maximum limit) tended to occur either in the optical

bands or in the WISE bands, were the fractional flux is small. Because of that, the final

uncertainty was still dominated by the 2MASS photometric uncertainty and was on the order

of 3−4%.

Finally, the total flux was divided by the fraction of a blackbody’s total flux covered by

the SED template given the effective temperature of the object in question. This correction

accounted for the finite wavelength range of the SED and was typically on the order of 1.5%.

Once the effective temperatures and the bolometric luminosity were determined by the

procedures described above, determining the radii of stars or brown dwarfs with a known

trigonometric parallax followed easily from the Stephan-Boltzmann law:

L = 4πR2σSBT 4
eff

where L is the object’s luminosity, R is its radius, σSB = 5.6704× 10−5 erg cm−2 s−1 K−4 is

the Stephan-Boltzmann constant, and Teff is the effective temperature.

In order to check the accuracy of the procedures for determining effective temperatures

and luminosities, the methodology was applied to seven early to mid M dwarfs that have

direct model-independent radius measurements obtained using Georgia State University’s

CHARA Array Long Baseline Optical Interferometer (Boyajian et al. 2012). Figure 5.4

shows the comparison. The mean absolute residual is 3.4% and in all cases the radius we
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derive agrees to the interferometric radii within the formal 1σ uncertainties calculated by

our methodology. While it is currently difficult to directly measure the angular diameters of

late M and L dwarfs using interferometry, the good agreement we obtain when comparing

the results of the SED fitting procedure to direct radius measurements for hotter M dwarfs

serves as a check on the technique. While direct radius measurements exist for several

eclipsing binaries, the individual components of these systems lack the photometric coverage

needed for applying our method and therefore cannot be used as checks. In Figure 5.5

we compare our effective temperatures used to derive the radii of Figure 5.4 to effective

temperatures obtained by Boyajian et al. (2012). This comparison serves mostly as a check

on the methodology of Boyajian et al. (2012) for obtaining effective temperatures, as their

effective temperatures are computed from model atmospheres based on the radii measured

with interferometry. Because our method uses effective temperatures to compute radii, the

radius check of Figure 5.4 is an implicit check of our effective temperatures.
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Figure 5.4 Comparison of M dwarf radii obtained via the SED fitting technique to values based on direct angular diameter
measurements obtained with Georgia State University’s CHARA Array Optical Interferometer (Boyajian et al. 2012). From
smallest to largest, the points correspond to: Barnard’s Star (M4.0V), GJ 725B (M3.5V), GJ 725A (M3.0V), GJ 15A (M1.5V),
GJ 411 (M2.0V), GJ 412A (M1.0V), and GJ 687 (M3.0V). The percent residuals in the sense (SED fit − CHARA) are: -0.3%,
-10.9%, -3.6%, 0.8%, -1.3%, -1.3%, and 5.3%, respectively. The mean absolute residual is 3.4%. In all cases the radius we derive
agrees to the interferometric radii within the formal 1σ uncertainties calculated by our methodology.
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Figure 5.5 Comparison of the derived effective temperatures for the M dwarfs used for radius comparison between inter-
ferometry (Boyajian et al. 2012) and this work. In both cases, the effective temperature is derived from atmospheric models.
Whereas our work uses a calculated effective temperature to derive radius, Boyajian et al. (2012) use a directly observed radius
to derive effective temperature. The radius check of 5.4 can therefore also be seen as a check on our effective temperatures.
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Table 5.3: Observed Properties

ID R. A. Dec Name Spct ref.a,b µ P.A. Parallax ref.b Distance Vtan V R I Tel.c VRI Notes
2000 2000 Type ′′/yr deg mas pc Km/s Epochs

1 00:04:34.9 −40:44:06 GJ 1001BC L4.5 14 1.643 156.0 77.02±2.07 1 13.15
+0.36
−0.34

102.4 22.77±.025 19.24±.045 16.76±.012 S 2 d,e,f

2 00:21:05.8 −42:44:49 LEHPM1-0494B M9.5 9 0.253 089.1 39.77±2.10 1 25.14+1.40
−1.26

30.1 21.61±.085 19.08±.010 16.69±.001 S 2 d,e

3 00:21:10.7 −42:45:40 LEHPM1-0494A M6.0 24 0.253 086.5 37.20±1.99 1 26.88+1.51
−1.36

32.2 17.28±.045 15.67±.005 13.84±.005 S 2 d,e

4 00:24:24.6 −01:58:20 BRI B0021-0214 M9.5 20 0.155 328.8 86.60±4.00 3 11.54+0.55
−0.50

8.4 20.01±.051 17.45±.016 15.00±.025 S 1 · · ·

5 00:36:16.0 +18:21:10 2MASS J0036+1821 L3.5 10 0.907 082.4 114.20±0.80 11 8.75+0.06
−0.06

37.6 21.43±.024 18.32±.016 15.92±.022 S 1 · · ·

6 00:52:54.7 −27:06:00 RG 0050-2722 M9.0 18 0.098 026.0 41.00±4.00 4 24.39+2.63
−2.16

11.3 21.54±.051 19.14±.017 16.57±.026 S 1 · · ·

7 01:02:51.2 −37:37:44 LHS 132 M8.0 22 1.479 079.8 81.95±2.73 17 12.20+0.42
−0.39

85.5 18.53±.021 16.30±.008 13.88±.012 C 3 · · ·

8 02:48:41.0 −16:51:22 LP 771-021 M8.0 15 0.274 175.7 61.60±5.40 5 16.23+1.55
−1.30

21.0 19.97±.050 17.70±.015 15.27±.015 S 2 · · ·

9 02:53:00.5 +16:52:58 SO0253+1652 M6.5 21 5.050 137.9 259.41±0.89 21,30 3.85+0.01
−0.01

92.2 15.14±.006 13.03±.004 10.65±.003 C 3 · · ·

10 03:06:11.5 −36:47:53 DENIS J0306-3647 M8.5 18 0.690 196.0 76.46±1.42 1 13.07+0.24
−0.23

42.7 19.38±.002 16.98±.023 14.49±.009 C 2 · · ·

11 03:39:35.2 −35:25:44 LP 944-020 M9.0 7 0.408 048.5 155.89±1.03 1 6.41+0.04
−0.04

12.4 18.70±.026 16.39±.007 14.01±.011 C 3 · · ·

12 03:51:00.0 −00:52:45 LHS 1604 M7.5 15 0.526 176.0 68.10±1.80 4 14.68+0.39
−0.37

36.6 18.11±.053 16.08±.020 13.80±.017 C 2 d

13 04:28:50.9 −22:53:22 2MASS J0428-2253 L0.5 16 0.189 038.1 38.48±1.85 1 25.98+1.31
−1.19

23.2 21.68±.050 19.18±.025 16.79±.017 S 2 · · ·

14 04:35:16.1 −16:06:57 LP 775-031 M7.0 25 0.356 028.0 95.35±1.06 1 10.48+0.11
−0.11

17.6 17.67±.005 15.49±.029 13.08±.030 C 2 · · ·

15 04:51:00.9 −34:02:15 2MASS J0451-3402 L0.5 15 0.158 036.5 47.46±1.51 1 21.07+0.69
−0.64

15.7 22.11±.052 19.38±.015 16.84±.024 S 1 d

16 05:00:21.0 +03:30:50 2MASS J0500+0330 L4.0 29 0.350 177.9 73.85±1.98 1 13.54+0.37
−0.35

22.4 23.01±.037 19.77±.026 17.32±.032 S 1 · · ·

17 05:23:38.2 −14:03:02 2MASS J0523-1403 L2.5 15 0.195 032.5 80.95±1.76 1 12.35+0.27
−0.26

11.4 21.05±.112 18.71±.021 16.52±.012 C 2 d

18 06:52:19.7 −25:34:50 DENIS J0652-2534 L0.0 28 0.250 289.3 63.76±0.94 1 15.68+0.23
−0.22

18.5 20.77±.050 18.38±.005 15.85±.016 S 2 · · ·

19 07:07:53.3 −49:00:50 ESO 207-61 M8.0 31 0.405 005.0 60.93±3.02 4 16.41+0.85
−0.77

31.5 21.09±.035 18.74±.023 16.19±.032 S 1 · · ·

20 07:46:42.5 +20:00:32 2MASS J0746+2000AB L0.0J 33 0.377 261.9 81.84±0.30 11,34,35 12.21+0.04
−0.04

21.8 20.05±.038 17.42±.037 14.90±.038 S 1 f

21 07:51:16.4 −25:30:43 DENIS J0751-2530 L2.5 28 0.889 279.2 59.15±0.84 1 16.90+0.24
−0.23

71.2 21.66±.045 18.86±.020 16.39±.005 S 2 · · ·

22 08:12:31.7 −24:44:42 DENIS J0812-2444 L1.5 28 0.196 135.5 45.47±0.96 1 21.99+0.47
−0.45

20.4 21.89±.053 19.45±.016 17.05±.025 S 1 · · ·

23 08:28:34.1 −13:09:19 SSSPM J0829-1309 L1.0 28 0.578 273.0 87.96±0.78 1 11.36
+0.10
−0.09

31.1 21.19±.023 18.41±.025 16.01±.026 S 1 d

24 08:29:49.3 +26:46:33 GJ 1111 M6.5 31 1.290 242.2 275.80±3.00 4 3.62+0.03
−0.03

22.1 14.94±.033 12.88±.005 10.58±.018 C 2 · · ·

25 08:40:29.7 +18:24:09 GJ 316.1 M6.0 32 0.908 240.0 71.10±1.00 4 14.06+0.20
−0.19

60.5 17.67±.042 15.72±.017 13.44±.006 C 2 · · ·

26 08:47:28.7 −15:32:37 2MASS J0847-1532 L2.0 15 0.240 146.1 58.96±0.99 1 16.96+0.28
−0.28

19.2 21.93±.068 19.16±.028 16.86±.024 C 2 · · ·

27 08:53:36.0 −03:29:28 LHS 2065 M9.0 31 0.550 249.4 117.98±0.76 1 8.47+0.05
−0.05

22.0 18.94±.032 16.74±.015 14.44±.029 C 3 · · ·

28 09:00:23.6 +21:50:04 LHS 2090 M6.0 21 0.774 221.2 156.87±2.67 21 6.37+0.11
−0.10

23.3 16.11±.032 14.12±.020 11.84±.010 C 3 · · ·

29 09:49:22.2 +08:06:45 LHS 2195 M8.0 6 0.887 177.4 60.32±1.67 1 16.57+0.47
−0.44

69.7 19.76±.152 17.66±.035 15.20±.036 C 1 · · ·

30 10:48:12.8 −11:20:11 LHS 292 M6.0 31 1.645 158.0 220.30±3.60 4 4.53
+0.07
−0.07

35.3 15.78±.057 13.63±.002 11.25±.025 C 3 · · ·

31 10:49:03.4 +05:02:23 LHS 2314 M6.0 2 0.624 217.0 41.10±2.30 4 24.33+1.44
−1.28

71.9 19.14±.033 17.13±.033 14.91±.025 C 2 · · ·

32 10:56:29.2 +07:00:53 GJ 406 M6.0 31 4.696 235.0 419.10±2.10 4 2.38+0.01
−0.01

53.1 13.58±.008 11.64±.028 9.44±.014 C 2 · · ·

33 10:58:47.9 −15:48:17 DENIS J1058-1548 L3.0 12 0.290 288.1 57.70±1.00 11,34,35 17.33+0.30
−0.29

23.8 23.01±.005 20.01±.045 17.66±.027 S 2 · · ·

34 11:06:18.9 +04:28:32 LHS 2351 M7.0 · · · 0.460 129.1 48.1±3.1 5 20.79+1.43
−1.25

45.3 19.49±.049 17.27±.017 14.87±.017 C 2 · · ·

35 11:21:49.0 −13:13:08 LHS 2397aAB M8.5J 8 0.507 264.7 65.83±2.02 1 15.19+0.48
−0.45

36.5 19.43±.036 17.33±.048 14.84±.040 S 1 d,f

36 11:26:39.9 −50:03:55 2MASS J1126-5003 L4.5 27 1.646 286.2 59.38±1.64 1 16.84+0.47
−0.45

131.3 23.75±.010 20.11±.020 17.51±.005 S 2 · · ·

37 11:53:52.7 +06:59:56 LHS 2471 M6.5 · · · 0.955 160.0 70.30±2.60 4 14.22+0.54
−0.50

64.3 18.10±.009 16.02±.035 13.77±.005 C 2 · · ·

38 11:55:42.9 −22:24:58 LP 851-346 M7.5 18 0.409 244.0 89.54±1.77 1 11.16+0.22
−0.21

21.6 18.18±.027 15.97±.030 13.50±.031 C 2 · · ·

39 12:24:52.2 −12:38:36 BRI B1222-1222 M9.0 31 0.322 234.4 58.60±3.80 5 17.06+1.18
−1.03

26.0 20.41±.039 17.99±.036 15.54±.038 S 1 · · ·

40 12:50:52.2 −21:21:09 LEHPM2-0174 M6.5 · · · 0.566 125.8 57.77±1.72 1 17.31+0.53
−0.50

46.4 18.36±.063 16.15±.005 13.78±.027 C 2 · · ·

41 13:05:40.2 −25:41:06 Kelu-1AB L2.0J 19 0.285 272.2 52.00±1.54 11 19.23+0.58
−0.55

25.9 22.03±.060 19.14±.050 16.80±.001 S 2 d,f

42 13:09:21.9 −23:30:33 CE 303 M7.0 13 0.381 176.0 69.33±1.33 1 14.42+0.28
−0.27

26.0 19.37±.026 17.00±.013 14.58±.008 C 2 · · ·

43 14:25:27.9 −36:50:22 DENIS J1425-3650 L3.0 29 0.544 211.6 86.45±0.83 1 11.56+0.11
−0.11

29.8 22.81±.060 19.67±.041 17.35±.034 S 1 · · ·

44 14:39:28.4 +19:29:15 2MASS J1439+1929 L1.0 11 1.295 288.3 69.60±0.50 11 14.36+0.10
−0.10

88.1 · · · 18.45±.056 15.97±.052 S 1 g

45 14:40:22.9 +13:39:23 2MASS J1440+1339 M8.0 25 0.331 204.7 45.00±1.11 1 22.22
+0.56
−0.53

34.8 18.95±.026 17.04±.080 14.81±.010 C 2 · · ·

Continued on next page
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ID R. A. Dec Name Spct ref.a,b µ P.A. Parallax ref.b Distance Vtan V R I Tel.c VRI Notes

2000 2000 Type ′′/yr deg mas pc Km/s Epochs

46 14:54:07.9 −66:04:47 DENIS J1454-6604 L3.5 28 0.565 125.1 84.88±1.71 1 11.78+0.24
−0.23

31.5 · · · 19.22±.034 16.89±.022 C 1 g

47 14:56:38.5 −28:09:51 LHS 3003 M7.0 17 0.965 210.0 152.49±2.02 4 6.55+0.08
−0.08

29.9 16.95±.014 14.90±.006 12.53±.008 C 2 · · ·

48 15:01:07.9 +22:50:02 2MASS J1501+2250 M9.0 31 0.074 211.7 94.40±0.60 11 10.59+0.06
−0.06

3.7 19.63±.021 17.39±.006 15.02±.018 C 2 · · ·

49 15:39:41.9 −05:20:43 DENIS J1539-0520 L3.5 25 0.602 079.9 61.25±1.26 1 16.32
+0.34
−0.32

46.5 · · · 19.69±.035 17.56±.046 C 1 g

50 15:52:44.4 −26:23:07 LHS 5303 M6.0 18 0.495 155.1 94.63±0.70 1 10.56+0.07
−0.07

24.7 16.53±.039 14.66±.021 12.49±.007 C 2 · · ·

51 15:55:15.7 −09:56:05 2MASS J1555-0956 L1.0 13 1.217 129.9 74.53±1.21 1 13.41+0.22
−0.21

77.4 21.04±.150 18.28±.019 15.82±.019 C 1 · · ·

52 16:07:31.3 −04:42:06 SIPS J1607-0442 M8.0 13 0.415 180.2 63.90±1.47 1 15.64+0.36
−0.35

30.7 19.49±.024 17.19±.014 14.78±.014 C 1 · · ·

53 16:32:58.8 −06:31:45 SIPS J1632-0631 M7.0 13 0.342 176.3 53.31±1.48 1 18.75+0.53
−0.50

30.4 20.23±.042 18.01±.014 15.58±.005 C 2 · · ·

54 16:45:22.1 −13:19:51 2MASS J1645-1319 L1.5 13 0.874 203.8 90.12±0.82 1 11.09+0.10
−0.10

45.9 20.96±.045 17.99±.001 15.65±.014 S 2 · · ·

55 16:55:35.3 −08:23:40 GJ 644C M7.0 17 1.202 223.4 154.96±0.52 26 6.45+0.02
−0.02

36.7 16.85±.059 14.64±.015 12.25±.015 C 3 e

56 17:05:48.3 −05:16:46 2MASS J1705-0516AB L0.5 23 0.165 132.5 55.07±1.76 1 18.15+0.59
−0.56

14.2 21.67±.032 19.04±.009 16.67±.006 C 1 d,f

57 19:16:57.6 +05:09:02 GJ 752B M8.0 31 1.434 203.8 171.20±0.50 26 5.84+0.01
−0.01

39.7 17.68±.029 15.21±.032 12.76±.026 S 1 e

58 20:45:02.3 −63:32:05 SIPS J2045-6332 M9.0 25 0.218 158.0 41.72±1.50 1 23.96+0.89
−0.83

24.7 21.14±.155 18.49±.036 16.04±.008 C 2 d

59 21:04:14.9 −10:37:37 2MASS J2104-1037 L3.0 15 0.662 116.0 53.00±1.71 1 18.86+0.62
−0.58

59.2 22.37±.023 19.46±.023 17.18±.021 S 1 · · ·

60 22:24:43.8 −01:58:52 2MASS J2224-0158 L4.5 11 0.984 152.3 86.70±0.69 11 11.53+0.09
−0.09

53.7 23.82±.039 20.26±.028 17.77±.022 S 1 · · ·

61 23:06:58.7 −50:08:58 SSSPM J2307-5009 M9.0 20 0.458 082.7 46.59±1.57 1 21.46+0.74
−0.69

46.5 21.36±.050 18.90±.005 16.46±.019 S 2 · · ·

62 23:54:09.3 −33:16:25 LHS 4039C M9.0 29 0.505 218.3 44.38±2.09 1 22.53+1.11
−1.01

53.9 20.96±.015 18.45±.001 15.98±.001 S 2 d,e

63 23:56:10.8 −34:26:04 SSSPM J2356-3426 M9.0 20 0.312 167.1 52.37±1.71 1 19.09+0.64
−0.60

28.2 20.81±.055 18.34±.001 15.89±.001 S 2 · · ·

aUnfortunately many papers do not cite references for spectral types. We have made an effort to track down primary sources. The
references listed here are either primary sources or, if a primary source could not be found, secondary sources that discuss spectral typing.
In a few cases several papers list the same spectral type with no reference and do not discuss the spectral type. In these cases this column
was left blank.

bReferences: (1) This work; (2) Reid et al. (1995); (3) Tinney et al. (1995); (4) van Altena et al. (1995); (5) Tinney (1996); (6) Gizis & Reid
(1997); (7) Kirkpatrick et al. (1997); (8) Mart́ın et al. (1999); (9) Basri et al. (2000); (10) Gizis et al. (2000); (11) Dahn et al. (2002); (12)
Geballe et al. (2002); (13) Gizis et al. (2002); (14) Leggett et al. (2002); (15) Cruz et al. (2003); (16) Kendall et al. (2003); (17) Costa et al.
(2005); (18) Crifo et al. (2005); (19) Liu & Leggett (2005a); (20) Lodieu et al. (2005); (21) Henry et al. (2006); (22) Reylé et al. (2006); (23)
Reid et al. (2006); (24) Caballero (2007); (25) Schmidt et al. (2007); (26) van Leeuwen (2007); (27) Looper et al. (2008); (28) Phan-Bao et al.
(2008); (29) Reid et al. (2008); (30) Gatewood & Coban (2009); (31) Jenkins et al. (2009); (32) Shkolnik et al. (2009); (33) Konopacky et al.
(2010); (34) Dupuy & Liu (2012); (35) Faherty et al. (2012)

cS - SOAR; C - CTIO 0.9m
dSee notes in §6.8.
eMember of resolved multiple system. Parallaxes for 1, 55, and 57 are for brighter components.
fUnresolved multiple
gNo V photometry is available. SED fit and Teff excludes V .
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CHAPTER 6

Results from the HLIMIT Survey

This chapter is based on §§ 6 and higher of “The Solar Neighborhood XXXII: The Hydrogen

Burning Limit” (Dieterich et al. 2014).

6.1 Photometric Results

Table 5.3 lists the VRI photometry, the telescope in which the photometry was taken, and

the number of epochs for which each target was observed. For the 28 targets observed on

both telescopes, Table 5.3 lists the set of observations with the smallest error or the most

epochs, with the number of epochs taking priority in selecting which data set to adopt. The

electronic version of Table 1 of Dieterich et al. (2013) lists both sets of photometry for

these objects, along with 2MASS J , H , and Ks and WISE W1, W2, and W3 photometry

for all objects. We achieved sensitivities of V = 23.75 ± 0.01 on SOAR with 90 minute

exposures under dark skies and good seeing. The time demands of the CTIOPI program at

the 0.9m telescope forced us to limit exposures to 20 minutes for the majority of targets.

Under dark skies and good seeing (i.e., .1.0′′) 20 minute integrations yielded results as faint

as V = 19.50 ± 0.05. In exceptional cases when we took longer integrations we were able

to achieve V = 21.93 ± 0.07 in 90 minutes under extraordinary conditions. The majority

of the measurements had errors < 0.05 magnitudes (i.e., 5%); however, for the fainter 0.9m

observations the errors are as large as 0.15 magnitudes. It was our original intention to

observe all targets for at least two epochs, but this was not possible for some targets due

to time constraints on SOAR. As discussed in §6.5, the optical variability for the sample
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is comparable to the photometric error, meaning that single epoch photometry should be

generally consistent with the values we would obtain by averaging more observations.

Table 5.3 shows the photometry in the photometric system used by the telescope in

which the measurements were taken − Johnson-Kron-Cousins for the CTIO 0.9m telescope

and Bessell for SOAR. Rather than extrapolating the relations of Bessell (1995), we used the

28 objects observed on both telescopes to derive new relations between the colors (V −RB)

and (V − RC) as well as (V − IB) and (V − IC) and show the results in Figure 6.1. Given

the photometric uncertainties of the V and R observations (typically .5%, Table 5.3 ), we

find no systematic deviation between the two (V −R) colors. We therefore adopt RB = RC

for the purpose of this study. We do detect a trend in the (V − I) colors, as shown in Figure

6.1b. Based on the data shown in Figure 6.1, we derive the transformation

(V − IB) = −0.0364(V − IC)2 + 1.4722(V − IC) − 1.3563.

We emphasize that the relations we derive here are based on a small sample and serve the

purposes of our study only. They should not be used as general relations analogous to those

of Bessell (1995). In particular, the difference in the I band is likely dominated by the

different detector efficiencies between the CTIO 0.9m and the SOAR/SOI CCDs in the far

red. The I photometry listed in Table 5.3 is in the photometric system of the telescope that

took the adopted observations.
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(a)

(b)

Figure 6.1 Comparison of photometry for 28 objects observed on both the CTIO 0.9m telescope (Kron-Cousins filters) and
the SOI instrument on the SOAR 4.1m telescope (Bessell filters). The dotted line indicates a 1 to 1 relation. The V band is
photometrically identical on both systems. Panel “a” shows that there is no systematic difference between RC and RB . Panel “b”
shows the trend for the I band. The solid line represents the polynomial fit (V −IB) = −0.0364(V −IC)2+1.4722(V −IC)−1.3563.
Most of the difference in the I band is likely due to different sensitivities between the two detectors in the far red. The dashed
vertical lines indicate the red limit of the Bessell (1995) color relations for the two filter systems.
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6.2 New Trigonometric Parallaxes

As reported in Table 6.1, the new trigonometric parallax measurements have a mean uncer-

tainty of 1.43 mas, corresponding to a distance error of ∼1% at 10 pc and ∼3.5% at the

original distance horizon of 25 pc. When comparing these results to other samples observed

by CTIOPI we found that nearby late M and early L targets tend to be ideal targets for opti-

cal parallax investigations on one meter class telescopes. Although the intrinsic faintness of

the targets made them a challenge in nights with poor seeing or a bright moon, the parallax

solution converged with fewer epochs and had smaller errors than what we experience for

brighter samples. We suspect that several factors contribute to this good outcome. First,

the long exposures average out short atmospheric anomalies that may cause asymmetric

Point Spread Functions (PSFs). The resulting symmetric PSF profiles facilitate centroid-

ing. Second, the long exposures generate images rich in background stars that are likely

more distant than reference stars available in shorter exposures. Because exposure times

for brighter targets are often limited by the time it takes for the science target to saturate

the detector, these faint and distant reference stars are not available for brighter parallax

targets. Third, as already mentioned, the use of the I band minimizes atmospheric refraction

when compared to other optical bands.

From a mathematical point of view, solving a trigonometric parallax consists of fitting

the measured apparent displacements of the science target to an ellipse whose eccentricity

and orientation is pre-determined by the target’s position on the celestial sphere.
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Table 6.1: New Trigonometric Parallaxes, Proper Mo-

tions, and Optical Variability

ID Name R. A. Decl. Filt. Nsea
a Nfrm

b Coverage Years Nref
c π(rel) π(corr) π(abs) µ P.A. Vtan Var.d

2000.0 2000.0 mas mas mas mas yr−1 deg E. of N. Km s−1 milli-mag
1 GJ 1001BC 00:04:34.9 -40:44:06 R 10s 112 1999.64-2011.74 12.10 6 75.99±2.06 1.03±0.16 77.02±2.07 1643.6±0.6 156.0±.04 102.4 · · ·

2 LEHPM1-0494B 00:21:05.8 -42:44:49 I 5s 24 2008.86-2012.83 3.97 9 39.22±2.10 0.55±0.08 39.77±2.10 252.9±1.6 089.1±.53 30.1 15.4
3 LEHPM1-0494A 00:21:10.7 -42:45:40 I 5s 24 2008.86-2012.83 3.97 9 36.65±1.99 0.55±0.08 37.20±1.99 252.8±1.5 086.5±.53 32.2 6.5
10 DENIS J0306-3647 03:06:11.5 -36:47:53 I 4s 39 2009.75-2012.94 3.19 8 75.79±1.42 0.67±0.08 76.46±1.42 690.0±1.1 196.0±.16 42.7 8.4
11 LP 944-020 03:39:35.2 -35:25:44 I 8s 59 2003.95-2012.94 8.99 10 154.53±1.03 1.36±0.10 155.89±1.03 408.3±0.3 048.5±.07 12.4 8.8
13 2MASS J0428-2253 04:28:50.9 -22:53:22 I 4s 22 2010.01-2012.94 2.92 9 38.04±1.85 0.44±0.04 38.48±1.85 189.3±1.9 038.1±1.11 23.2 18.0
14 LP 775-031 04:35:16.1 -16:06:57 I 7c 74 2003.95-2012.88 8.94 8 94.53±1.05 0.82±0.13 95.35±1.06 356.0±0.4 028.0±.11 17.6 8.1
15 2MASS J0451-3402 04:51:00.9 -34:02:15 I 5s 22 2008.86-2013.12 4.26 8 46.43±1.43 1.03±0.47 47.46±1.51 157.6±1.0 036.5±.75 15.7 50.6
16 2MASS J0500+0330 05:00:21.0 +03:30:50 I 4c 23 2009.75-2012.89 3.15 13 73.38±1.98 0.47±0.12 73.85±1.98 350.2±1.7 177.9±.41 22.4 14.8
17 2MASS J0523-1403 05:23:38.2 -14:03:02 I 3c 24 2010.98-2013.12 2.14 9 80.35±1.76 0.60±0.10 80.95±1.76 194.5±1.6 032.5±.94 11.4 11.7
18 DENIS J0652-2534 06:52:19.7 -25:34:50 I 4c 36 2010.02-2013.12 3.10 12 63.24±0.94 0.52±0.04 63.76±0.94 249.6±0.7 289.3±.31 18.5 10.5
21 DENIS J0751-2530 07:51:16.4 -25:30:43 I 4c 35 2010.15-2013.12 2.97 10 58.65±0.84 0.50±0.02 59.15±0.84 889.1±0.8 279.2±.09 71.2 15.3
22 DENIS J0812-2444 08:12:31.7 -24:44:42 I 4s 28 2010.02-2013.25 3.24 14 44.79±0.96 0.68±0.03 45.47±0.96 196.4±0.7 135.5±.41 20.4 19.9
23 SSSPM J0829-1309 08:28:34.1 -13:09:19 I 4c 24 2009.94-2013.26 3.32 10 87.24±0.76 0.72±0.16 87.96±0.78 577.3±0.7 273.0±.10 31.1 9.2
26 2MASS J0847-1532 08:47:28.7 -15:32:37 I 5s 35 2009.32-2013.27 3.95 12 58.34±0.99 0.62±0.09 58.96±0.99 239.5±0.7 146.1±.34 19.2 9.9
27 LHS 2065 08:53:36.0 -03:29:28 I 10s 101 2003.95-2013.26 9.31 6 117.19±0.76 0.79±0.03 117.98±0.76 550.3±0.2 249.4±.04 22.0 12.1
29 LHS 2195 09:49:22.2 +08:06:45 I 4s 36 2010.01-2013.10 3.09 9 59.55±1.66 0.77±0.15 60.32±1.67 886.7±1.2 177.4±.12 69.7 11.1
35 LHS 2397aAB 11:21:49.0 -13:13:08 I 7c 68 2005.09-2013.26 8.16 9 65.28±2.02 0.55±0.07 65.83±2.02 506.9±0.6 264.7±.11 36.5 22.1
36 2MASS J1126-5003 11:26:39.9 -50:03:55 I 5s 20 2009.19-2013.25 4.07 13 58.82±1.64 0.56±0.12 59.38±1.64 1645.7±1.0 286.2±.06 131.3 25.3
38 LP 851-346 11:55:42.9 -22:24:58 I 7s 56 2007.18-2013.28 6.10 9 88.92±1.77 0.62±0.06 89.54±1.77 408.6±0.9 244.0±.23 21.6 10.4
40 LEHPM2-0174 12:50:52.2 -21:21:09 I 8s 45 2005.14-2013.38 8.25 9 57.33±1.72 0.44±0.03 57.77±1.72 565.7±0.6 125.8±.15 46.4 7.8
42 CE 303 13:09:21.9 -23:30:33 I 4s 47 2010.16-2013.27 3.11 11 68.41±1.32 0.92±0.14 69.33±1.33 380.5±1.1 176.0±.26 26.0 10.2
43 DENIS J1425-3650 14:25:27.9 -36:50:22 I 5s 33 2009.31-2013.28 3.96 13 85.80±0.79 0.65±0.24 86.45±0.83 543.7±0.8 211.6±.17 29.8 15.1
45 2MASS J1440+1339 14:40:22.9 +13:39:23 I 5s 34 2009.25-2013.26 4.01 8 44.13±1.11 0.87±0.07 45.00±1.11 331.1±0.9 204.7±.28 34.8 6.9
46 DENIS J1454-6604e 14:54:07.9 -66:04:47 I 5s 22 2009.32-2013.26 3.94 11 84.21±1.70 0.67±0.17 84.88±1.71 564.8±1.3 125.1±.25 31.5 19.9
49 DENIS J1539-0520e 15:39:41.9 -05:20:43 I 5c 29 2009.25-2013.25 4.00 11 60.51±1.26 0.74±0.08 61.25±1.26 602.3±1.1 79.9±.17 46.5 17.0
50 LHS 5303 15:52:44.4 -26:23:07 I 9s 85 2004.57-2012.59 8.02 10 94.10±0.70 0.53±0.07 94.63±0.70 495.4±0.2 155.1±.05 24.7 10.7
51 2MASS J1555-0956 15:55:15.7 -09:56:05 I 4c 25 2010.19-2013.28 3.08 10 73.94±1.21 0.59±0.05 74.53±1.21 1217.0±1.3 129.9±.12 77.4 9.9
52 SIPS J1607-0442 16:07:31.3 -04:42:06 I 4c 32 2010.39-2013.26 2.87 8 62.79±1.47 1.11±0.06 63.90±1.47 414.6±1.2 180.2±.26 30.7 12.2
53 SIPS J1632-0631 16:32:58.8 -06:31:45 I 3c 40 2010.19-2012.58 2.39 11 52.31±1.47 1.00±0.14 53.31±1.48 342.2±1.9 176.3±.45 30.4 17.9
54 2MASS J1645-1319 16:45:22.1 -13:19:51 I 5c 48 2009.32-2013.27 3.95 15 89.19±0.81 0.93±0.10 90.12±0.82 873.8±0.6 203.8±.08 45.9 11.6
56 2MASS J1705-0516AB 17:05:48.3 -05:16:46 I 5s 18 2009.32-2013.25 3.93 10 53.34±1.74 1.73±0.26 55.07±1.76 164.7±1.1 132.5±.79 14.2 40.9
58 SIPS J2045-6332 20:45:02.3 -63:32:05 I 4c 45 2010.59-2013.54 2.95 11 40.65±1.50 1.07±0.07 41.72±1.50 220.4±1.2 158.0±.88 24.7 38.9
59 2MASS J2104-1037 21:04:14.9 -10:37:37 I 4c 22 2009.56-2012.58 3.02 12 52.23±1.70 0.77±0.15 53.00±1.71 661.9±1.3 116.0±.22 59.2 12.5
61 SSSPM J2307-5009 23:06:58.7 -50:08:58 I 4c 41 2009.55-2012.81 3.26 9 46.21±1.57 0.38±0.06 46.59±1.57 457.8±1.6 82.7±.32 46.5 11.5
62 LHS 4039C 23:54:09.3 -33:16:25 I 4c 58 2003.51-2007.74 4.23 5 41.91±2.08 2.47±0.15 44.38±2.09 505.5±1.8 218.3±.40 53.9 20.0
63 SSSPM J2356-3426 23:56:10.8 -34:26:04 I 3c 28 2009.56-2011.77 2.21 9 51.80±1.71 0.57±0.07 52.37±1.71 312.5±2.1 167.1±.67 28.2 10.2

aNumber of seasons observed, where 2−3 months of observations count as one season, for seasons having more than three images taken.
The letter “c” indicates a continuous set of observations where multiple nights of data were taken in each season, whereas an “s” indicates
scattered observations when one or more seasons have only a single night of observations. Generally “c” observations are better.

bTotal number of images used in reduction. Images are typically taken in sets of three consecutive observations.
cNumber of reference stars used to reduce the parallax.
dPhotometric variability of the science target.
eNo V photometry. Correction for differential color refraction based on estimated V from color-magnitude relations.
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Figure 6.2 Parallax ellipses for the 37 parallaxes reported in this study (objects 2 and 3 comprise a wide binary and
parallaxes are derived for both components using the same images). The black dots sample the ellipse that each object appears
to trace on the sky as a result of Earth’s annual motion. The eccentricity of the ellipse is a function of the target’s location in the
celestial sphere, with objects close to the ecliptic plane producing the most eccentric ellipses. Low parallax factor observations
provide significant constraints when the ellipse is not markedly eccentric.
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At the same time, we must also fit the constant linear component of motion due to the

object’s proper motion. The size of the ellipse’s major and minor axes provide a measure of

the object’s distance. Figure 6.2 shows the parallax ellipses for the observations. In these

plots a parallax factor of 1 or -1 indicates the target’s maximum apparent displacement

from its mean position in the right ascension axis. Because we restricted the hour angle of

the observations to ±30 minutes (§5.4), high parallax factor observations occurred during

evening and morning twilight. As is clear from Figure 6.2, these twilight observations are

essential for determining the parallax ellipse’s major axis. The extent to which observations

with lower parallax factors constrained the final parallax solution depended greatly on the

parallax ellipse’s eccentricity. An object with coordinates close to the ecliptic pole produces

a parallax ellipse that is nearly circular, and in that case low parallax factor observations can

still provide significant constraints to the parallax solution (e.g., object # 1). The opposite

occurs with the high eccentricity parallax ellipses for objects lying close to the ecliptic plane,

where low parallax factor observations contribute little towards the final solution (e.g., object

# 29).

Regardless of the target’s position on the celestial sphere, we found out that attempting

to fit a parallax ellipse to more than ∼4 epochs but fewer than ∼7 epochs will often produce

an erroneous answer whose formal uncertainty is also unrealistically small. True convergence

of a parallax result was best determined by assuring that the following conditions were met:

(1) adding new epochs caused changes that were small compared to the formal uncertainty;

(2) high parallax factors observations were taken during both evening twilight and morning
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twilight; and (3) the parallax ellipses shown in Figure 6.2 appeared to be sufficiently sampled

so that the points trace out a unique ellipse.

Nine of the 37 targets listed in Table 6.1 have previously published trigonometric par-

allaxes. These targets are listed in Table 6.2 with our new trigonometric parallax and the

previous value. In five cases trigonometric parallaxes were not yet published at the begin-

ning of this study in 2009 (Andrei et al. 2011; Dupuy & Liu 2012; Faherty et al. 2012). LHS

4039C (Subasavage et al. 2009) is a member of a resolved triple system; we re-reduced our

data set with LHS 4039C as the science target (see §6.8). Finally, we note that LP944-020

(Tinney 1996) is no longer a member of the 5 pc sample and 2MASS J1645-1319 is no longer

a member of the 10 pc sample (Henry et al. 2006).

Table 6.2: Targets with Previously Published Parallaxes

ID Name New New Previous Previous Reference
πabs (mas) distance (pc) πabs (mas) distance (pc)

1 GJ 1001 BC 77.02±2.07 12.98+0.36
−0.34 76.86±3.97 13.01+0.71

−0.63 Henry et al. (2006)

11 LP 944-020 155.89±1.03 6.41+0.04
−0.04 201.40±4.20 4.96+0.11

−0.10 Tinney (1996)

26 2MASS J0847-1532 58.96±0.99 16.96+0.28
−0.28 76.5±3.5 13.07+0.63

−0.57 Faherty et al. (2012)

27 LHS 2065 117.98±0.76 8.47+0.05
−0.05 117.30±1.50 8.52+0.11

−0.11 van Altena et al. (1995)

35 LHS2397Aab 65.83±2.02 15.19+0.48
−0.45 73.0±2.1 13.78+0.41

−0.38 Dupuy & Liu (2012)

49 DENIS J1539-0520 61.25±1.26 16.32+0.34
−0.32 64.5±3.4 15.50+0.86

−0.78 Andrei et al. (2011)

54 2MASS J1645-1319 90.12±0.82 11.09+0.10
−0.10 109.9±6.1 9.01+0.53

−0.48 Faherty et al. (2012)

56 2MASS J1705-0516AB 55.07±1.76 18.15+0.59
−0.56 45.0±12.0 22.22+8.08

−4.68 Andrei et al. (2011)

62 LHS 4039C 44.38±2.09 22.53+1.11
−1.01 44.24±1.78 22.60+0.95

−0.87 Subasavage et al. (2009)

Table 9 of Dupuy & Liu (2012) lists all known ultra-cool dwarfs with trigonometric par-

allaxes at the time of that publication. In that list, 156 objects have spectral types matching

the spectral type range of our study, M6V to L4. In addition, out of the seventy trigonomet-

ric parallaxes reported by Faherty et al. (2012), 24 are first parallaxes for objects in the M6V
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to L4 spectral type range. The 28 objects for which we publish first parallaxes in this paper

therefore represent a 15.5% increase in the number of objects with trigonometric parallaxes

in the M6V to L4 spectral type range, for a total of 208 objects.

6.3 Effective Temperatures and Luminosities

Table 6.3 lists the derived properties of effective temperature, luminosity, and radius for the

entire sample. All resulting quantities are synthesized and summarized graphically in Figure

6.3, a bona fide Hertzsprung-Russell (HR) diagram for the end of the stellar main sequence.

Figure 6.3 is followed by versions that use the ID number from Table 6.3 and spectral types

as plotting symbols.

Table 6.3: Derived Properties

ID R. A. Dec. Name Spct. Teff Luminosity Radius Notes
2000.0 2000.0 Type K log(L/L⊙) R⊙

1 00:04:34.9 −40:44:06 GJ 1001BC L4.5 1725±21 -4.049±.048 0.105±.005 d,e,f
2 00:21:05.8 −42:44:49 LEHPM1-0494B M9.5 2305±57 -3.506±.046 0.110±.008 d,e
3 00:21:10.7 −42:45:40 LEHPM1-0494A M6.0 2918±21 -2.818±.046 0.152±.008 d,e
4 00:24:24.6 −01:58:20 BRI B0021-0214 M9.5 2315±54 -3.505±.042 0.109±.007 · · ·

5 00:36:16.0 +18:21:10 2MASS J0036+1821 L3.5 1796±33 -3.950±.011 0.109±.004 · · ·

6 00:52:54.7 −27:06:00 RG 0050-2722 M9.0 2402±34 -3.599±.078 0.091±.008 · · ·

7 01:02:51.2 −37:37:44 LHS 132 M8.0 2513±29 -3.194±.030 0.133±.005 · · ·

8 02:48:41.0 −16:51:22 LP 771-021 M8.0 2512±19 -3.507±.076 0.093±.008 · · ·

9 02:53:00.5 +16:52:58 SO0253+1652 M6.5 2656±37 -3.137±.013 0.127±.004 · · ·

10 03:06:11.5 −36:47:53 DENIS J0306-3647 M8.5 2502±40 -3.366±.017 0.110±.004 · · ·

11 03:39:35.2 −35:25:44 LP 944-020 M9.0 2312±71 -3.579±.010 0.101±.006 · · ·

12 03:51:00.0 −00:52:45 LHS 1604 M7.5 · · · · · · · · · d
13 04:28:50.9 −22:53:22 2MASS J0428-2253 L0.5 2212±57 -3.441±.042 0.129±.009 · · ·

14 04:35:16.1 −16:06:57 LP 775-031 M7.0 2532±25 -3.033±.012 0.157±.003 · · ·

15 04:51:00.9 −34:02:15 2MASS J0451-3402 L0.5 2146±41 -3.676±.029 0.104±.005 d
16 05:00:21.0 +03:30:50 2MASS J0500+0330 L4.0 1783±19 -4.010±.024 0.103±.003 · · ·

17 05:23:38.2 −14:03:02 2MASS J0523-1403 L2.5 2074±27 -3.898±.021 0.086±.003 d
18 06:52:19.7 −25:34:50 DENIS J0652-2534 L0.0 2313±56 -3.600±.015 0.098±.005 · · ·

19 07:07:53.3 −49:00:50 ESO 207-61 M8.0 2403±31 -3.625±.039 0.088±.004 · · ·

Continued on next page
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ID R. A. Dec. Name Spct. Teff Luminosity Radius Notes
2000.0 2000.0 Type K log(L/L⊙) R⊙

20 07:46:42.5 +20:00:32 2MASS J0746+2000AB L0.0J 2310±51 -3.413±.009 0.122±.005 f
21 07:51:16.4 −25:30:43 DENIS J0751-2530 L2.5 2186±32 -3.732±.013 0.094±.003 · · ·

22 08:12:31.7 −24:44:42 DENIS J0812-2444 L1.5 2295±47 -3.696±.021 0.089±.004 · · ·

23 08:28:34.1 −13:09:19 SSSPM J0829-1309 L1.0 2117±37 -3.845±.011 0.088±.003 d
24 08:29:49.3 +26:46:33 GJ 1111 M6.5 2690±27 -3.107±.022 0.128±.004 · · ·

25 08:40:29.7 +18:24:09 GJ 316.1 M6.0 2683±30 -3.039±.013 0.139±.003 · · ·

26 08:47:28.7 −15:32:37 2MASS J0847-1532 L2.0 1922±66 -3.798±.017 0.113±.008 · · ·

27 08:53:36.0 −03:29:28 LHS 2065 M9.0 2324±27 -3.516±.010 0.107±.002 · · ·

28 09:00:23.6 +21:50:04 LHS 2090 M6.0 2680±24 -3.084±.016 0.132±.003 · · ·

29 09:49:22.2 +08:06:45 LHS 2195 M8.0 2481±36 -3.399±.025 0.107±.004 · · ·

30 10:48:12.8 −11:20:11 LHS 292 M6.0 2588±32 -3.166±.016 0.129±.004 · · ·

31 10:49:03.4 +05:02:23 LHS 2314 M6.0 2691±13 -3.169±.049 0.119±.006 · · ·

32 10:56:29.2 +07:00:53 GJ 406 M6.0 2700±56 -3.036±.044 0.138±.009 · · ·

33 10:58:47.9 −15:48:17 DENIS J1058-1548 L3.0 1804±13 -3.997±.019 0.102±.002 · · ·

34 11:06:18.9 +04:28:32 LHS 2351 M7.0 2619±27 -3.218±.056 0.119±.008 · · ·

35 11:21:49.0 −13:13:08 LHS 2397aAB M8.5J 2376±25 -3.291±.028 0.133±.005 d,f
36 11:26:39.9 −50:03:55 2MASS J1126-5003 L4.5 1797±49 -4.035±.025 0.098±.006 · · ·

37 11:53:52.7 +06:59:56 LHS 2471 M6.5 2611±22 -3.113±.032 0.135±.005 · · ·

38 11:55:42.9 −22:24:58 LP 851-346 M7.5 2595±28 -3.194±.018 0.125±.003 · · ·

39 12:24:52.2 −12:38:36 BRI B1222-1222 M9.0 2398±38 -3.454±.057 0.108±.007 · · ·

40 12:50:52.2 −21:21:09 LEHPM2-0174 M6.5 2598±25 -2.909±.026 0.173±.006 · · ·

41 13:05:40.2 −25:41:06 Kelu-1AB L2.0J 2026±45 -3.616±.033 0.126±.007 d,f
42 13:09:21.9 −23:30:33 CE 303 M7.0 2508±35 -3.309±.018 0.117±.004 · · ·

43 14:25:27.9 −36:50:22 DENIS J1425-3650 L3.0 1752±69 -4.029±.009 0.104±.008 · · ·

44 14:39:28.4 +19:29:15 2MASS J1439+1929 L1.0 2186±100 -3.703±.010 0.098±.009 g
45 14:40:22.9 +13:39:23 2MASS J1440+1339 M8.0 2624±22 -3.163±.022 0.126±.003 · · ·

46 14:54:07.9 −66:04:47 DENIS J1454-6604 L3.5 1788±100 -3.931±.019 0.112±.012 g
47 14:56:38.5 −28:09:51 LHS 3003 M7.0 2581±17 -3.266±.013 0.116±.002 · · ·

48 15:01:07.9 +22:50:02 2MASS J1501+2250 M9.0 2398±36 -3.602±.009 0.091±.002 · · ·

49 15:39:41.9 −05:20:43 DENIS J1539-0520 L3.5 1835±100 -4.006±.019 0.098±.010 g
50 15:52:44.4 −26:23:07 LHS 5303 M6.0 2718±12 -2.972±.008 0.147±.001 · · ·

51 15:55:15.7 −09:56:05 2MASS J1555-0956 L1.0 2194±27 -3.712±.015 0.096±.002 · · ·

52 16:07:31.3 −04:42:06 SIPS J1607-0442 M8.0 2466±30 -3.271±.021 0.126±.004 · · ·

53 16:32:58.8 −06:31:45 SIPS J1632-0631 M7.0 2485±26 -3.459±.025 0.100±.003 · · ·

54 16:45:22.1 −13:19:51 2MASS J1645-1319 L1.5 1925±66 -3.793±.011 0.113±.008 · · ·

55 16:55:35.3 −08:23:40 GJ 644C M7.0 2611±43 -3.214±.007 0.120±.004 e
56 17:05:48.3 −05:16:46 2MASS J1705-0516AB L0.5 2207±62 -3.695±.029 0.097±.006 d,f
57 19:16:57.6 +05:09:02 GJ 752B M8.0 2478±29 -3.340±.009 0.115±.003 e
58 20:45:02.3 −63:32:05 SIPS J2045-6332 M9.0 2179±111 -3.129±.032 0.190±.020 d
59 21:04:14.9 −10:37:37 2MASS J2104-1037 L3.0 1851±53 -3.812±.030 0.120±.008 · · ·

60 22:24:43.8 −01:58:52 2MASS J2224-0158 L4.5 1567±88 -4.185±.013 0.109±.012 · · ·

61 23:06:58.7 −50:08:58 SSSPM J2307-5009 M9.0 2347±48 -3.593±.030 0.096±.005 · · ·

Continued on next page
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ID R. A. Dec. Name Spct. Teff Luminosity Radius Notes
2000.0 2000.0 Type K log(L/L⊙) R⊙

62 23:54:09.3 −33:16:25 LHS 4039C M9.0 2412±40 -3.423±.041 0.111±.006 d,e
63 23:56:10.8 −34:26:04 SSSPM J2356-3426 M9.0 2438±42 -3.542±.029 0.094±.004 · · ·

dSee notes in §6.8.
eMember of resolved multiple system. Parallaxes for 1, 55, and 57 are for brighter components.
fUnresolved multiple
gNo V photometry is available. SED fit and Teff excludes V .
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Figure 6.3 HR Diagram for objects with spectral types ranging from M6V to L4.5. Several representative objects are named. Known binaries with joint photometry
are enclosed in open circles. A few known binaries are clearly over-luminous, denoting their low luminosity ratios. The L4.5 binary GJ 1001BC was deconvolved
based on the nearly identical luminosity of both components (Golimowski et al. 2004a). As we discuss in §6.7, the L2.5 dwarf 2MASS J0523-1403 lies at a pronounced
minimum in the radius-luminosity relation and its location likely constitutes the end of the stellar main sequence. Versions of this diagram that use the ID labels in
Tables 5.3 and and spectral type labels for plotting symbols follow on the next two pages.
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Figure 6.4 Same as Figure 6.3 but using ID numbers from Tables 5.3 and 6.3 as plot labels.
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Figure 6.5 Same as Figure 6.3 but using spectral types as plot labels. Numbers 6−9.5 correspond subtypes of M dwarfs and 0−4.5 correspond subtypes of L
dwarfs.
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While the agreement with interferometric measurements shown in Figure 5.4 lends con-

fidence that the overall methodology is right, the effective temperatures derived based on

nine bands of photometry are still essentially model-dependent. The uncertainties in tem-

peratures listed in Table 6.3 and shown by the error bars in Figure 6.3 can therefore be

interpreted as measures of how accurate the model atmospheres are in a given temperature

range. Inspection of Figure 6.3 shows that the models work very well for temperatures above

2600 K, with uncertainties generally smaller than 30 K. The uncertainties then progressively

increase as the temperature lowers and can be greater than 100 K for objects cooler than

2000 K. The turning point at 2,600 K has been explained by the model authors (Allard et al.

2012) as a consequence of solid grain formation starting at that temperature, thus making

the atmosphere significantly more complex.

The year 2012 brought about crucial advances in our ability to determine effective tem-

peratures for cool stellar (and substellar) atmospheres. First, the publication of the WISE

All Sky Catalog1 provided uniform photometric coverage in the mid-infrared for known cool

stars and brown dwarfs. Second, as already discussed, the publication of the BT-Settl model

atmospheres with revised solar metallicities has provided opportunities to match observa-

tional data to fundamental atmospheric parameters with unprecedented accuracy (§5.6).

Despite these recent advances, it is still useful to compare the results obtained here with

earlier pioneering work in the field of effective temperature determination for cool atmo-

spheres. Golimowski et al. (2004b) computed effective temperatures for 42 M, L, and T,

dwarfs based on observations in the L′ (3.4−4.1 µm) and M′ (4.6−4.8 µm ) bands. They

1http://wise2.ipac.caltech.edu/docs/release/allsky/
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first used photometry to calculate bolometric fluxes based on observed spectra, and then

used evolutionary models (Burrows et al. 1997) to determine a range of effective tempera-

tures based on bolometric luminosities and radii with the assumption of an age range of 0.1

to 10 Gyr as well as a unique value for 3 Gyr. Cushing et al. (2008) determined the effective

temperatures of nine L and T dwarfs by fitting observed flux-calibrated spectra in the wave-

length range 0.6−14.5 µm to their own model atmospheres. Their technique, like ours, has

the advantage of relying solely on atmospheric models as opposed to the significantly more

uncertain evolutionary models, as discussed in detail in §6.7.3. Finally, Rajpurohit et al.

(2013) have recently compared optical spectra (0.52−1.0 µm) for 152 M dwarfs to the same

BT-Settl models we use in this study. Twenty-five of their M dwarfs have spectral types of

M6V or later.

Table 6.4 compares the results presented here to overlapping objects in these three studies.

While it is difficult to generalize from the small overlap amongst the different samples,

there is a tendency for our results to be ∼100K cooler than the others. The cause of this

discrepancy is not clear. In the case of Golimowski et al. (2004b) the most likely explanation

is that their assumed mean age of 3 Gyr may not be representative of our sample. An age

mismatch combined with the significant uncertainty in the evolutionary models could easily

account for this temperature difference. Out of the five objects in common between this

study and Rajpurohit et al. (2013), the effective temperature for one object agrees well while

three objects have mismatches of ∼100K, and another has a significantly larger mismatch.

While we do not know what is causing the different values, we note that the comparison
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of radii derived with our methodology with empirically measured radii (Figure 5.4) makes

systematic error in our measurements an unlikely explanation. A temperature difference

of ∼100K would produce a systematic radius difference of 5% to 10% in the temperature

range under consideration, and yet our derived radii have a mean absolute residual of only

3.4% in a random scatter. We must, however, note that because the stars used in the

comparison in Figure 5.4, the comparison does not exclude the possibility of a systemic

effect at lower temperatures in the BT-Settl models. Because Rajpurohit et al. (2013) base

their calculations on optical spectra alone, we speculate that the discrepancy may be due to

the stronger effects of metallicity in altering the optical colors of late M dwarfs. Changes

in metallicity in the optical part of the spectrum often mimic changes in temperature, and

it may be very hard to distinguish the two effects without resorting to infrared data, where

the effects of metallicity are less pronounced.

Table 6.4: Comparison of Effective Temperatures from

Different Studies

ID Name Spectral This G2004a G2004a C2008a R2013a

Type Work Range 3 Gyr
30 LHS 292 M6.0V 2588±32 2475−2750 2725 · · · 2700
32 GJ 406 M6.0V 2700±56 2650−2900 2900 · · · · · ·

40 LEHPM2-0174 M6.5V 2598±25 · · · · · · · · · 2700
47 LHS 3003 M7.0V 2581±17 2350−2650 2600 · · · · · ·

38 LP 851-346 M7.5V 2595±28 · · · · · · · · · 2600
7 LHS 132 M8.0V 2513±29 · · · · · · · · · 2600

27 LHS 2065 M9.0V 2324±27 2150−2425 2400 · · · · · ·

58 SIPS J2045-6332 M9.0V 2179±111 · · · · · · · · · 2500
4 BRI B0021-0214 M9.5V 2315±54 2150−2475 2425 · · · · · ·

20 2MASS J0746+2000AB L0.0J 2310±51 1900−2225 2200 · · · · · ·

44 2MASS J1439+1929 L1.0 2186±100 1950−2275 2250 · · · · · ·

41 Kelu-1AB L2.0J 2026±45 2100−2350 2300 · · · · · ·

33 DENIS J1058-1548 L3.0 1804±13 1600−1950 1900 · · · · · ·

5 2MASS J0036+1821 L3.5 1796±33 1650−1975 1900 1700 · · ·

1 GJ 1001 BC L4.5 1725±21 1750−1975 1850 · · · · · ·

60 2MASS J2224-0158 L4.5 1567±88 1475−1800 1750 1700 · · ·

aG2004 Golimowski et al. (2004b); C2008 Cushing et al. (2008); R2013 Rajpurohit et al. (2013)
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In addition to comparisons to other studies with objects in common to ours, we compare

the general trends of the HR diagram (Figure 6.3) with the values derived by Konopacky et al.

(2010). That study used Keck AO resolved near infrared photometry of M and L binaries

as well as HST resolved optical photometry to derive effective temperatures and luminosi-

ties. Twenty-two of their targets fall in the temperature range of our study, but because

theirs was a high resolution AO study there are no targets in common. Figure 6.6 shows

their results over-plotted on our HR diagram. The large uncertainties in Konopacky et al.

(2010) make their data difficult to interpret, and are probably a result of the lack of mid

infrared photometry in their methodology. There is good agreement between their results

and ours at cooler temperatures, but the two trends steadily diverge for temperatures above

∼2000 K, with Konopacky et al. (2010) predicting temperatures as much as 500 K cooler

for a given luminosity. The discrepancy is probably a result of atmospheric modeling. While

the BT-Settl models used in our study predict the rate of atmospheric dust formation and

sedimentation for a wide range of temperatures, the “DUSTY” models (Allard et al. 2001)

used by Konopacky et al. (2010) assume the extreme case where grains do not settle below

the photosphere, thus providing a strong source of opacity. The “DUSTY” models replicate

the conditions of L dwarf atmospheres well but gradually become inadequate at hotter tem-

peratures where grain formation is less relevant (Allard et al. 2013). The additional source

of opacity then causes the M dwarfs to appear cooler and larger than they really are.
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Figure 6.6 HR diagram of Figure 6.3 with data from Konopacky et al. (2010) over-plotted with open circles. The data agree
well at low temperatures, but steadily diverge at higher temperatures. Both data sets have the minimum radius at ∼2075K.

6.3.1 χ2 Tests for Temperature Fits

In §5.6 and Figure 5.4 we demonstrated that our methodology for determining effective

temperatures, luminosities, and radii is in good agreement with interferometric radius mea-

surements for early and mid M dwarfs. Unfortunately no directly measured radii are available

for objects in the temperature range of this study so that a similar direct comparison can

be made. The lack of a direct test on radii for the late M and early L dwarf range leaves

open the possibility that perhaps the BT-Settl models work fine at higher temperatures, but
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have systematic errors at lower temperatures. In particular, the possibility that the gap at

T ∼ 2000 K and subsequent reversal of the radius trend seen in Figures 6.12 and 6.15 is due

to some sort of problem in model fitting must be investigated.

As an additional check on our results, we performed a χ2 goodness of fit test that compares

the observed photometric colors to synthetic colors to all models in our BT-Settl model grid

(§5.5). Two caveats must be kept in mind in evaluating the results of the χ2 test. First,

whereas the methodology developed in §5.5 is optimized to interpolate results in between

the steps of the discrete BT-Settl model grid, a χ2 test evaluates the goodness of fit to the

model spectra in grid increments and not in between them. The goodness of fit is therefore

also a function of how close the observed colors happen to be to the colors of a particular

model in the grid (as opposed to in between two grid elements). One must therefore expect

that a wide range of minimal χ2 values can indicate an adequate fit. Figure 6.7 shows the

minimum χ2 values for the objects in the observed sample plotted as a function of the objects’

interpolated temperature. We see that most objects have a minimum reduced χ2 value that

falls on the range of zero to 0.2, and that there appears to be a well-defined upper boundary

to this range. This effect is likely the result of the discrete nature of the BT-Settl grid. The

resulting temperature for a particular object that has a minimum reduced χ2 in the upper

part of this range should therefore be treated with the same degree of confidence as the

temperature for an object with a lower χ2 value; the higher χ2 value is likely the result of

the object’s colors being in between those of two grid elements, and could be brought down

by a shift in the grid steps. In this sense, the methodology of §5.5 is superior to a simple χ2



124

minimization approach because the 20 independent color comparisons draw information from

several grid elements and the method uses interpolation to find the best fit. Second, we must

keep in mind that a given effective temperature may appear several times in the BT-Settl

grid because the grid is three-dimensional, with gravity and metallicity also playing a role.

Because shifts in both gravity and metallicity can mimic the effect of a shift in temperature,

multiple models with different combinations of gravity, metallicity, and temperature may

have very similar χ2 values. This degeneracy was broken in our adopted methodology §5.5

by testing several combinations of gravity and metallicity and determining which one was

best at having most colors indicate a small temperature range. Because a χ2 minimization

procedure offers a single value (the χ2 for a particular model) as opposed to the 20 values (one

for each color) offered by our technique, it is more difficult to discard outliers and determine

to which temperature the independent color tests are converging using the χ2 methodology.

Despite these caveats, the χ2 tests are nevertheless useful in assessing the temperature

fits. Figure 6.7 shows the fits for the entire sample as a function of the objects’ temperature.

We see a slight increase in the minimum χ2 values as the temperature decreases. The slight

elevation is to be expected given the more uncertain optical photometry for cooler objects

and the more complex nature of their atmospheres. Figure 6.7 shows four outliers with

higher χ2 values at temperatures below 2000 K. The two highly elevated values correspond

to 2MASS J1126-5003 (ID# 36) and 2MASS J2224-0158 (ID# 60), from left to right. The

minimum in the χ2 trends for these two objects was not as sharp as those for the rest of the

sample, and the results for those objects should be assigned a lesser degree of confidence. The
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Figure 6.7 Minimum χ2 for objects in the observed sample. Known unresolved binaries have been excluded. The horizontal
axis denotes the interpolated effective temperature adopted for each object. The wide range of χ2 values between zero and 0.2
is likely due to grid discreteness and differences in χ2 values within that range should not be interpreted as differences in the
goodness of the interpolated fit. The plot suggests that the dispersion of χ2 values is somewhat higher at temperatures cooler
than 2000 K. From left to right, the two very elevated values in the cool side of the plot correspond to 2MASS J1126-5003 (ID#
36) and 2MASS J2224-0158 (ID# 60). The minimum in the minimization trends (Figure 6.8) for these objects was marginal
and the data should be treated with caution. The two slightly elevated objects are DENIS J1058-1548 (ID# 33) and 2MASS
J0500+0330 (ID# 16), from left to right. Both of these objects had good minimization trends.

(a) (b) (c)

Figure 6.8 χ2 plots for three representative objects. In all cases, there is a clear range of minimum χ2 values that indicate
that models around that temperature range are significantly better fits than at higher or lower temperatures. Because of grid
discreteness and grid degeneracy in metallicity and gravity, it is often not possible to determine which single model is the best
fit for most colors under consideration. Therefore, it is possible that the model with the lowest χ2 value has a temperature
slightly different from the interpolated temperature.
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two slightly elevated cool objects are DENIS J1058-1548 (ID# 33) and 2MASS J0500+0330

(ID# 16), from left to right. Both of these objects had good minimization trends, suggesting

that their slight elevation is not representative of a bad fit.

The χ2 tests are a confirmation of the trend indicated by the error bars in Figure 6.15,

where the error bars indicate that the dispersion amongst the effective temperatures deter-

mined by different colors is generally no higher at cooler temperatures. Both tests show

that the morphology of the synthetic spectra are equally good representations of Nature at

cool temperatures as they are at higher temperatures. There remains the possibility that

somehow the models are assigning an inaccurate effective temperature to a morphologically

correct spectrum, however given the strong dependence of spectral morphology on effective

temperature, this hypothesis is most unlikely − a spectrum that adequately represents Na-

ture most likely has an accurate effective temperature as a parameter. Figure 6.8 shows

the range of χ2 values that results from comparing the colors of three objects to models of

several different temperatures. In all three cases the χ2 trend has a pronounced minimum

region that corresponds to the best effective temperature range. While the caveats about

grid discreteness and degeneracy due to gravity and metallicity must be kept in mind and

prevent us from picking the best temperature match amongst the spectra with the few lowest

χ2 values, it is still apparent that the convergence about a temperature range is strong. In

other words, a few models clearly represent Nature much better than the other ones. From

that, we can conclude that the range of temperatures indicated by the minimum χ2 range is

likely in agreement with the real temperature of the object in question.
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6.4 Color-Magnitude Relations

Color-absolute magnitude relations are often the first tools used in estimating the distance

to a star or brown dwarf. Determining useful relations using only near infrared colors is

challenging for late M and L dwarfs due to the degenerate nature of the near infrared color-

magnitude sequence. One possible solution is the use of spectral type-magnitude relations

(e.g., Cruz et al. 2003); however, such relations require accurate knowledge of spectral types

in a consistent system and are subject to the uncertainties inherent to any discrete classifica-

tion system. Here we present new color-magnitude relations based on the optical photometry,

2MASS photometry, and trigonometric parallaxes reported in Table 5.3. Table 6.5 presents

third order polynomial fits for all color-magnitude combinations of the filters VRIJHKs ex-

cept for those with the color R − I, which becomes degenerate (i.e., nearly vertical) for

R − I > 2.5. As an example, the first line of Table 6.5 should be written algebraically as

MV = 0.21509(V − R)3 − 2.81698(V − R)2 + 14.16273(V − R) − 1.45226 (±0.53)

1.61 ≤ (V − R) ≤ 3.64

The relations are an extension of those published in Henry et al. (2004) into the very red

optical regime. They are also complementary to the izJ relations of Schmidt et al. (2010).

Figure 6.9 shows the color-absolute magnitude diagrams and polynomial fits for Mv vs. (V −

Ks) and MKs vs. (R − Ks). Known binaries as well as objects that are otherwise elevated

in the color-magnitude diagrams were excluded when computing the polynomial fits. The
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1σ uncertainties vary widely by color, and are as small as 0.24 magnitudes for colors that

combine the V filter with the JHKs filters.

Table 6.5: Coefficients for Color-Magnitude Polynomial

Fits

abs. mag. color 3rd order 2nd order 1st order constant range σ

MV V − R 0.21509 −2.81698 14.16273 −1.45226 1.61−3.64 0.53
MV V − I −0.48431 7.02913 −30.24232 55.89960 3.44−6.24 0.64
MV V − J −0.05553 1.34699 −8.78095 32.19850 5.28−9.75 0.30
MV V − H −0.03062 0.79529 −5.04776 23.53283 5.91−11.00 0.24
MV V − K −0.02006 0.54283 −3.22970 19.05263 6.23−11.80 0.25
MV R − J 0.38685 −4.78978 21.67522 −19.02625 3.67−6.19 0.39
MV R − H −0.03466 0.96656 −4.96743 21.51357 4.30−7.44 0.37
MV R − K −0.06296 1.36944 −7.28721 25.94882 5.30−8.24 0.40
MV I − J 1.18205 −9.28970 27.59574 −11.71022 1.84−3.70 0.42
MV I − H 0.24541 −2.81568 13.65365 −4.94381 2.47−4.95 0.48
MV I − K 0.09183 −1.32390 8.75709 −0.69280 2.79−5.75 0.51
MV J − H 5.05439 −19.22739 30.20127 5.70728 0.51−1.25 1.11
MV J − K 4.35996 −22.11834 40.93688 −5.24138 0.80−2.05 0.92
MV H − K 23.11303 −54.44877 51.74136 4.69129 0.29−0.80 0.84
MR V − R 0.21509 −2.81698 13.16273 −1.45226 1.61−3.64 0.53
MR V − I −0.39598 5.59585 −23.46994 44.27366 3.44−6.24 0.60
MR V − J −0.06508 1.48971 −9.70545 32.85954 5.28−9.75 0.33
MR V − H −0.03213 0.78557 −4.94969 21.92657 5.91−11.00 0.28
MR V − K −0.01882 0.47360 −2.65145 16.13934 6.23−11.80 0.27
MR R − J 0.10246 −0.87144 3.43087 7.64284 3.67−6.19 0.31
MR R − H −0.09460 1.86774 −9.85431 28.99232 4.30−7.44 0.26
MR R − K −0.08589 1.71800 −9.39445 28.84437 5.30−8.24 0.28
MR I − J 0.56097 −4.48907 14.76241 −2.05088 1.84−3.70 0.30
MR I − H 0.16178 −1.99780 10.43314 −2.43140 2.47−4.95 0.32
MR I − K 0.05698 −0.92853 6.77139 0.79636 2.79−5.75 0.35
MR J − H 6.18765 −22.77418 31.75342 3.61753 0.51−1.25 0.84
MR J − K 3.81245 −19.70377 36.29580 −4.63378 0.80−2.05 0.69
MR H − K 26.23045 −59.75888 51.53576 3.25785 0.29−0.80 0.65
MI V − R −0.30086 1.51360 1.22679 6.92302 1.61−3.64 0.55
MI V − I −0.48431 7.02913 −31.24230 55.89957 3.44−6.24 0.64
MI V − J −0.08775 2.06323 −14.53807 43.98302 5.28−9.75 0.37
MI V − H −0.05264 1.35632 −10.21586 35.60933 5.91−11.00 0.32
MI V − K −0.03540 0.96451 −7.46468 29.33155 6.23−11.80 0.30
MI R − J 0.05949 −0.06127 −1.61308 15.59044 3.67−6.19 0.37
MI R − H −0.15245 3.02932 −17.57707 43.57051 4.30−7.44 0.29

Continued on next page
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abs. mag. color 3rd order 2nd order 1st order constant range σ

MI R − K −0.13466 2.76845 −16.87739 44.05227 5.30−8.24 0.29
MI I − J 0.34947 −2.28896 7.32700 3.70661 1.84−3.70 0.26
MI I − H −0.05625 0.65099 −0.12146 8.93958 2.47−4.95 0.27
MI I − K −0.07979 0.96350 −1.79721 11.08030 2.79−5.75 0.30
MI J − H 1.00902 −9.06504 20.09129 4.41802 0.51−1.25 0.76
MI J − K 2.30591 −13.03453 26.79644 −2.67247 0.80−2.05 0.62
MI H − K 6.36493 −24.92761 31.89872 4.41508 0.29−0.80 0.60
MJ V − R −0.33337 2.21935 −2.66206 9.68513 1.61−3.64 0.39
MJ V − I −0.36037 5.32260 −24.29187 45.23880 3.44−6.24 0.45
MJ V − J −0.05553 1.34699 −9.78094 32.19847 5.28−9.75 0.30
MJ V − H −0.03301 0.88633 −6.95483 26.83274 5.91−11.00 0.26
MJ V − K −0.02220 0.63644 −5.19321 22.87309 6.23−11.80 0.25
MJ R − J 0.10247 −0.87144 2.43089 7.64280 3.67−6.19 0.31
MJ R − H −0.07510 1.64461 −10.09617 28.93402 4.30−7.44 0.25
MJ R − K −0.07709 1.67484 −10.64410 31.00300 5.30−8.24 0.26
MJ I − J 0.34947 −2.28897 6.32701 3.70660 1.84−3.70 0.26
MJ I − H −0.01826 0.36899 −0.39111 8.86504 2.47−4.95 0.25
MJ I − K −0.05043 0.71480 −1.94540 10.88528 2.79−5.75 0.26
MJ J − H −1.75450 1.46627 6.33858 6.88885 0.51−1.25 0.52
MJ J − K 0.89335 −5.42563 12.79557 2.55729 0.80−2.05 0.44
MJ H − K −0.71691 −5.04246 13.53644 6.37982 0.29−0.80 0.44
MH V − R −0.14308 0.68377 1.11084 6.14662 1.61−3.64 0.33
MH V − I −0.27640 4.04822 −18.12088 34.99090 3.44−6.24 0.38
MH V − J −0.04698 1.11998 −7.94481 26.92333 5.28−9.75 0.25
MH V − H −0.03062 0.79529 −6.04775 23.53280 5.91−11.00 0.24
MH V − K −0.02177 0.59741 −4.70539 20.62932 6.23−11.80 0.24
MH R − J 0.05414 −0.30135 0.23514 9.78688 3.67−6.19 0.27
MH R − H −0.09460 1.86773 −10.85430 28.99230 4.30−7.44 0.26
MH R − K −0.08348 1.70954 −10.45700 29.39801 5.30−8.24 0.27
MH I − J 0.19024 −1.18253 3.72420 5.16641 1.84−3.70 0.24
MH I − H −0.05625 0.65099 −1.12146 8.93959 2.47−4.95 0.27
MH I − K −0.06209 0.76792 −1.96050 10.17762 2.79−5.75 0.28
MH J − H −1.75451 1.46627 5.33858 6.88885 0.51−1.25 0.52
MH J − K 1.03555 −6.09029 13.19045 2.07593 0.80−2.05 0.45
MH H − K 0.29861 −8.11097 14.59934 5.74926 0.29−0.80 0.43
MK V − R −0.00121 −0.37537 3.46600 4.16422 1.61−3.64 0.31
MK V − I −0.20466 3.00271 −13.26362 27.36341 3.44−6.24 0.34
MK V − J −0.03630 0.86706 −6.07434 22.17402 5.28−9.75 0.24
MK V − H −0.02655 0.68316 −5.12699 20.83821 5.91−11.00 0.24
MK V − K −0.02006 0.54283 −4.22970 19.05261 6.23−11.80 0.25
MK R − J 0.04475 −0.23500 0.13773 9.38717 3.67−6.19 0.26
MK R − H −0.10097 1.92794 −11.03651 28.84667 4.30−7.44 0.27
MK R − K −0.08589 1.71800 −10.39445 28.84436 5.30−8.24 0.28

Continued on next page
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abs. mag. color 3rd order 2nd order 1st order constant range σ

MK I − J 0.14572 −0.88536 2.93380 5.59314 1.84−3.70 0.25
MK I − H −0.09030 0.98749 −2.35957 10.16948 2.47−4.95 0.28
MK I − K −0.07979 0.96350 −2.79722 11.08030 2.79−5.75 0.30
MK J − H −1.86948 1.75166 4.48358 6.92764 0.51−1.25 0.49
MK J − K −1.86948 1.75166 4.48358 6.92764 0.51−1.25 0.49
MK H − K 0.29864 −8.11102 13.59936 5.74925 0.29−0.80 0.43
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(a) (b)

Figure 6.9 Example color-absolute magnitude diagrams over-plotted with third order polynomial fits. The Mv × (V−K) relation shown in (a) has a particularly
low uncertainty (σ = 0.25 mag) due to the steep decrease in V band flux in the late M and L dwarf sequence. The Mk × (R−K) relation shown in (b) has a slightly
higher uncertainty (σ = 0.28 mag) but is more practical from an observational point of view due to the difficulty in obtaining V band photometry for L dwarfs. Binary
or otherwise elevated objects were excluded from the polynomial fits and are shown enclosed with open circles. Figure (b) uses the same labeling scheme as Figure
(a).
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Figure 6.10 I band photometric variability derived from trigonometric parallax observations. The linear increase in minimum
variability with decreasing temperature is most likely not real and caused by lower signal-to-noise for fainter targets. To account
for this trend we established the threshold for deeming a target variable at 15 milli-magnitudes, indicated by the dashed line.
Thirteen out of a sample of 36 targets are above the threshold and are labeled wit the ID number used in Table 6.1. See §6.8
for a discussion of the three most variable targets.

6.5 Optical Variability

Photometric variability in very low mass stars and brown dwarfs has lately become an

active area of research because variability can serve as a probe of many aspects of an ob-

ject’s atmosphere (e.g, Heinze et al. 2013). The leading candidate mechanisms thought to

cause photometric variability are non-uniform cloud coverage in L and early T dwarfs (e.g.,

Radigan et al. 2012; Apai et al. 2013), optical emission due to magnetic activity, and the

existence of cooler star spots due to localized magnetic activity. The period of variability is

often thought to correspond to the object’s period of rotation. Harding et al. (2011) have

suggested that the link between optical variability and radio variability in two L dwarfs is
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indicative of auroral emission analogous to that seen in Jupiter. Khandrika et al. (2013) re-

port an overall variability fraction of 36+7
−6% for objects with spectral types ranging from L0

to L5 based on their own observations as well as six previous studies (Bailer-Jones & Mundt

2001; Gelino et al. 2002; Koen 2003; Enoch et al. 2003; Koen et al. 2004; Koen 2005). The

threshold for variability of these studies ranged from 10 to 36 milli-magnitudes and were

conducted using various photometric bands.

We have measured I band photometric variability as part of our parallax observations.

Differential photometry of the parallax target is measured with respect to the astrometric

reference stars. Any reference star found to be variable to more than 50 milli-magnitudes

is discarded and the remaining stars are used to determine the baseline variability for the

field. Details of the procedure are discussed in Jao et al. (2011). Figure 6.10 shows the 1σ

variability for 36 parallax targets2. Because the parallax targets were mostly fainter than

the reference stars, photometric signal-to-noise of the target objects is the limiting factor for

sensitivity to variability. This limit becomes more pronounced for cooler and fainter stars,

thus creating the upward linear trend for the least variable objects in Figure 6.10. Because

of this trend, we have conservatively set the threshold for deeming a target variable at 15

milli-magnitudes, as indicated by the dashed line in Figure 6.10. We detect 13 variable

objects out of 36, corresponding to an overall variability of 36+9
−7% where the uncertainties

are calculated using binomial statistics3. While this result is in excellent agreement to that

2GJ 1001BC is photometrically contaminated by the much brighter A component, and was therefore
excluded from the variability study.

3A review of binomial statistics as applied to stellar populations can be found in the appendix of
Burgasser et al. (2003b)
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of Khandrika et al. (2013) (36+7
−6%), we note that our sample includes spectral types M6V

to L4, while theirs ranges from L0 to L5. Targets found to be significantly variable are

labeled in Figure 6.10 with their ID numbers. The objects 2MASS J0451-3402 (L0.5, ID#

15), 2MASS J1705-0516AB (L0.5 joint type, ID# 56), and SIPS J2045-6332 (M9.0V, ID#

58) stand out as being much more variable than the rest of the sample. We defer discussion

of these objects until §6.8.

Figure 6.11 Astrometric residuals indicating a perturbation on the photocenter position for DENIS J1454-6604 with data
taken in the I band. The dots correspond to the positions of the system’s photocenter once proper motion and parallax reflex
motion are removed. Each solid dot is the nightly average of typically three consecutive observations. The open dot represents
a night with a single observation. The lack of a discernible perturbation in the declination axis indicates that the system is
viewed nearly edge-on and that its orbital orientation is primarily East−West.

6.6 DENIS J1454-6604AB − A New Astrometric Binary

DENIS J1454-6604AB is an L3.5 dwarf first identified by Phan-Bao et al. (2008). We report

a trigonometric parallax of 84.88±1.71 mas, corresponding to a distance of 11.78+0.24
−0.23 pc.
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Figure 6.11 shows the residuals to the trigonometric parallax solution, denoting the motion

of the object’s photocenter once the parallax reflex motion and the proper motion have been

subtracted. The sinusoidal trend in the RA axis is strong indication of an unseen companion

that is causing the system’s photocenter to move with respect to the reference stars. The

absence of a discernible trend in the declination axis indicates that the system must be nearly

edge-on and its orbit has an orientation that is predominantly East-West. At this stage it is

not possible to determine the system’s period or component masses. While it may appear in

Figure 6.11 that the system has completed nearly half an orbital cycle in the ∼4 years that

we have been monitoring it, unconstrained eccentricity means that the system may take any

amount of time to complete the remainder of its orbit.

Once the full orbit of a photocentric astrometric system is mapped, determining the

mass and luminosity ratio of the system is a degenerate problem. The same perturbation

can be produced by either a system where the companion has a much lower mass and

luminosity than the primary or by a system where the components have nearly the same

mass and luminosity. We note that a system where the two components are exactly equal

would be symmetric about the barycenter and would therefore produce no perturbation at

all (§7.2). The fact that the system appears elevated in the HR diagram (Figure 6.3) is an

indication that the secondary component is contributing considerable light and that therefore

the nearly equal mass scenario is more likely. As described in Dieterich et al. (2011), a single

high resolution image where both components are resolved is enough to determine the flux

ratio of the components and therefore determine individual dynamical masses once the full
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photocentric orbit has been mapped.

We will closely monitor this system with the goal of reporting the component masses

once orbital mapping is complete.

6.7 The End of the Stellar Main Sequence

One of the most remarkable facts about VLM stars is that a small change in mass or metal-

licity can bring about profound changes to the basic physics of the object’s interior, if the

change in mass or metallicity pushes the object into the realm of the brown dwarfs, i.e.,

on the other side of the hydrogen burning minimum mass limit. If the object is unable

to reach thermodynamic equilibrium through sustained nuclear fusion, the object’s collapse

will be halted by non-thermal electron degeneracy pressure. The macroscopic properties of

(sub)stellar matter are then ruled by different physics and obey a different equation of state

(e.g., Saumon et al. 1995). Once electron degeneracy sets in at the core, the greater grav-

itational force of a more massive object will cause a larger fraction of the brown dwarf to

become degenerate, causing it to have a smaller radius. The mass-radius relation therefore

has a pronounced local minimum near the critical mass attained by the most massive brown

dwarfs (Chabrier et al. 2009; Burrows et al. 2011). Identifying the stellar/substellar bound-

ary by locating the minimum radius in the stellar/substellar sequence has an advantage over

other search methods (§5.1.1): while the values associated with the locus of minimum radius

depend on the unconstrained details of evolutionary models (§6.7.3), its existence is a matter

of basic physics and is therefore largely model independent.
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In Figures 6.12 and 6.15 we re-arrange the HR diagram of Figure 6.3 to make radius an

explicit function of luminosity (Figure 6.12) and effective temperature (Figure 6.15). Both

Figures are followed by versions that use object ID numbers and spectral types as labels.

We do not plot the data for LEHPM2-0174 and SIPS J2045-6332, which have abnormally

elevated radii and would have made the figures difficult to read. These two objects are

presumably young and are discussed individually in §6.8. After excluding the objects marked

as known binaries and a few other elevated objects that we suspect are binary or young

objects, both diagrams show the inversion of the radius trend near the location of the L2.5

dwarf 2MASS J0523-1403. Figures 6.12 and 6.15 can be compared to Figures 3, 4, and

5 of Burrows et al. (2011) and Figures 1 and 2 of Chabrier et al. (2009) for insight into

how the data fit the predicted local minimum in the radius trends. While these works

examine radius as a theoretical function of mass at given isochrones, there is a remarkable

similarity between the overall shape of the theoretical mass-radius trend and the luminosity-

radius and temperature-radius trends we detect empirically. The real data are likely best

represented by a combination of isochrones that is biased towards the ages at which high mass

substellar objects shine as early L dwarfs (See §6.7.1 and Figures 6.21−6.24). While Figure

1 of Chabrier et al. (2009) indicates radii as small as ∼ 0.075R⊙ for the 10 Gyr isochrone,

we should not expect to see radii this small in this study because substellar objects with

that age are no longer in the luminosity range we observed (M6V to L4, §5.2). The same

argument is valid for the figures in Burrows et al. (2011). Indeed, because luminosity and

temperature are primarily functions of mass for stars and primarily functions of mass and



138

age for brown dwarfs, the plots in Figures 6.12 and 6.15 essentially replicate the morphology

of the mass-radius relation with added dispersion caused by the observed sample’s finite

ranges of metallicity and age.

2MASS J0523-1403 has Teff = 2, 074 ± 27K, log(L/L⊙) = −3.898 ± 0.021, (R/R⊙) =

0.086 ± 0.0031, and V − K = 9.42. While we cannot exclude the possibility of finding a

stellar object with smaller radius, it is unlikely that such an object would be far from the

immediate vicinity of 2MASS J0523-1403 in these diagrams4. If cooler and smaller radii stars

exist, they should be more abundant than the brown dwarfs forming the upward radius trend

at temperatures cooler than 1900 K in Figure 6.15 because such stars would spend the vast

majority of their lives on the main sequence, where their positions in the diagrams would be

almost constant, whereas brown dwarfs would constantly cool and fade, thus moving to the

right in the plots. We detect no such objects. We note that while the brown dwarfs cooler

than 1900 K in Figure 6.15 are brighter than any putative lower radius star of the same

temperature, the difference would amount to only ∼0.3 magnitudes, which is not enough to

generate a selection effect in our sample definition.

4See Table 6.6 for model predictions regarding the radius of the smallest possible star.
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Figure 6.12 Luminosity−Radius diagram for the observed sample. The targets are the same as in Figure 6.3 except for LEHPM2-0174 and SIPS J2045-6332, which
were excluded for scaling purposes due to their large radii and are discussed in §6.8. This diagram provides the same fundamental information as an HR diagram, but
makes radius easier to visualize. Once known and suspected binaries are excluded, the radius trend has an inversion about 2MASS J0523-1403 (L2.5), indicating the
onset of core electron degeneracy for cooler objects. The location and relevance of Kelu-1AB is discussed in §6.8.
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Figure 6.13 Same as Figure 6.12, but plotted with the ID numbers used in Tables 5.3 and 6.3.
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Figure 6.14 Same as Figure 6.12, but plotted with spectral types. Numbers 6−9.5 represent M subtypes. Numbers 0−4.5 represent L subtypes.
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Literature

Figure 6.15 Temperature−Radius diagram for the observed sample. The targets are the same as in Figure 6.3 except for LEHPM2-0174 and SIPS J2045-6332,
which were excluded for scaling purposes due to their large radii and are discussed in §6.8. This diagram provides the same fundamental information as an HR
diagram, but makes radius easier to visualize. Once known and suspected binaries are excluded, the radius trend has an inversion about 2MASS J0523-1403 (L2.5),
indicating the onset of core electron degeneracy for cooler objects. The location and relevance of Kelu-1AB is discussed in §6.8. The red double-headed arrow indicates
the effect of varying the temperature by 100K at 2000K (5%) at a radius of 0.10 R⊙. For most targets the uncertainty in radius is dominated by the uncertainty in
effective temperature, meaning that an object’s position would vary along the diagonal line of a rectangle formed by the error bars of temperature and radius.
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Figure 6.16 Same as Figure 6.15, but plotted with the ID numbers used in Tables 5.3 and 6.3.



144

Figure 6.17 Same as Figure 6.15, but plotted with spectral types. Numbers 6−9.5 represent M subtypes. Numbers 0−4.5 represent L subtypes.
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6.7.1 A Discontinuity at the End of the Main Sequence

Figures 6.12 and 6.15 show a relative paucity of objects forming a gap at temperatures (lu-

minosities) immediately cooler (fainter) than 2MASS J0523-1403. This gap is then followed

by a densely populated region where the radii are larger in both diagrams. Although we

cannot at this point exclude the hypothesis that this gap is due to statistics of small num-

bers, we note that the existence of such a gap is consistent with the onset of the brown

dwarf cooling curve. The stellar sequence to the left-hand-side of 2MASS J0523-1403 is well

populated because VLM stars have extremely long main sequence lives, therefore holding

their positions in the diagrams. The space immediately to the right-hand-side of 2MASS

J0523-1403 is sparsely populated because objects in that region must be in a very narrow

mass and age range. They must be very high mass brown dwarfs that stay in that high

luminosity (temperature) region for a relatively brief period of time before they fade and

cool. The population density increases again to the right of this gap because that region can

be occupied by brown dwarfs with several combinations of age and mass.

The space density as functions of luminosity and effective temperature inferred from

Figures 6.12 and 6.15 can be compared to theoretical mass and luminosity functions, while

keeping in mind the important caveat that our observed sample is not volume complete

(§5.2). The mass functions of Burgasser (2004) and Allen et al. (2005) both predict a shallow

local minimum in the space distribution of dwarfs at temperatures ∼2000 K. In particular,

Figure 6 of Burgasser (2004) predicts a relatively sharp drop in space density at 2000 K,

in a manner similar to our results. However, the subsequent increase in space density at
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cooler temperatures is predicted to be gradual in both Burgasser (2004) and Allen et al.

(2005) (Figure 2). Neither mass function predicts the sudden increase in space density we

see at ∼1800 K in Figure 6.15. This last point is particularly noteworthy because the sample

selection criteria for this study (§5.2) aims to evenly sample the spectral type sequence. Our

selection effect works against the detection of any variation in space density as a function of

mass and luminosity, and yet we still detect a sharper gap between ∼2000 K and ∼1800 K

than what is expected from the mass functions. Burgasser (2004) also predicts a population

with significant stellar content down to temperatures of ∼1900 K, whereas the temperature-

radius and luminosity-radius trends indicate that the coolest stellar object in our sample is

2MASS J0523-1403, with Teff = 2074±27 K. In summary, one may say that the current mass

functions are useful in replicating the overall morphology of the observed distribution, but

do not fully explain the detailed structure we notice at the end of the stellar main sequence.

Only observing a truly volume-complete sample will yield definite answers about population

properties such as the mass function.

The discontinuity is even more pronounced in terms of radius: whereas radius decreases

steadily with decreasing temperature until the sequence reaches 2MASS J0523−1403 (R =

0.086R⊙), it then not only starts increasing, but jumps abruptly to a group of objects with

R ∼ 0.1R⊙. The discontinuity in radius is also visible as an offset in the HR diagram

(Figure 6.3). This discontinuity is further evidence of the end of the stellar main sequence

and has a simple explanation: whereas stars achieve their minimum radius at the zero age

main sequence, brown dwarfs continue to contract slightly as they cool (Burrows et al. 1997;
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Baraffe et al. 1998; Chabrier et al. 2000; Baraffe et al. 2003). Substellar objects with radii

falling in the discontinuity should therefore be high mass brown dwarfs that fall outside

the luminosity range of our sample (M6V to L4, §5.2). We note that this sudden increase

in radius is a different effect than the previously mentioned sudden decreases in luminosity

and temperature. The fact that these discontinuities occur at the same location and can be

explained by consequences of the stellar/substellar boundary provides strong evidence that

we have indeed detected the boundary.

The above argument for the causes of the discontinuity also lend credence to the idea

that 2MASS J0523-1403 is a star despite the fact that it has the smallest radius in the

sample. We note that 2MASS J0523-1403 and the L1.0 dwarf SSSPM J0829-1309 located

immediately to its left fit nicely within the linear stellar sequences in Figures 6.3, 6.12, and

6.15. As already discussed, we would also expect stars to be more prevalent than brown

dwarfs around the locus of minimum radius due to the limited amount of time during which

a massive brown dwarf would occupy that parameter space. Most importantly, there is a

difference between the local minimum in the radius trends and the absolute minimum. While

theory predicts that the object with the smallest radius should be the most massive brown

dwarf (Burrows et al. 2011), such an object would not attain its minimum radius until it

cools down and enters the T and Y dwarf regime, and therefore drifts beyond the luminosity

range of this study.
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Point size scales with square of radius.
Suspected young objects enclosed with circles.

Figure 6.18 Temperature−Tangential Velocity Relation for the observed sample. The radius of the symbols scales with the
square of the object’s radius. Three suspected young objects are over-plotted with open circles. Known unresolved binaries
have been excluded. No definitive signs of distinct kinematic groups are apparent. In particular, objects cooler than 2000 K,
which are elevated in Figure 6.15 do not seem to be a very young population.
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Figure 6.19 Same as Figure 6.18, plotted with ID numbers.

6.7.2 Kinematic Analysis

The space velocities of a stellar population can be statistically associated with stellar age

(§2.4). The basic idea behind the concept is that stars are born from molecular clouds that
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Figure 6.20 Same as Figure 6.18, plotted with spectral types.

are concentrated in the Galaxy’s thin disk, a low kinetic energy region, and gradually pick

up speed as they undergo dynamical interactions with older stars. The test is particularly

useful in the first several Myr of a star’s life, when youth and low kinematic velocities are
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more strongly correlated. While a complete determination of an object’s Galactic motion

requires knowledge of its radial velocity from spectroscopic observations, proper motions and

trigonometric parallaxes are enough to establish the two components of tangential velocity.

In Figure 6.18 we plot the tangential velocities for the observed sample as a function of

effective temperature. The lack of definitive trends in Figure 6.18 excludes the possibility

that objects cooler than 2000K form a distinct very young population and that their youth

(larger radii) are causing them to appear elevated in the temperature-radius diagram (Figure

6.15). If any trend can be discerned in Figure 6.18, it is that the cooler objects appear to

have somewhat higher kinematics than the late Ms. The higher tangential velocities noted

for the cooler objects could be a selection effect, as high proper motion objects tend to

be disproportionally targeted for inclusion in nearby parallax searches. However, the same

selection effect applies to the sample of smallest stars as well. The cause of the apparent

minimum in the tangential velocity trend around T ∼ 2300 K (∼M9V) is not clear, and

could also be due to a selection effect.

6.7.3 Comparison of the HR Diagram to Evolutionary Models

We now compare our results to the predictions of the four most prevalent evolutionary mod-

els encompassing the stellar/substellar boundary (Burrows et al. 1993, 1997; Baraffe et al.

1998; Chabrier et al. 2000; Baraffe et al. 2003)5. All of these models are the combination of

an interior structure model and an atmospheric model used as a boundary condition. Atmo-

spheric models have become highly sophisticated and achieved a great degree of success over

5While Burrows et al. (1997) is well known for presenting a unified theory of brown dwarf and giant
planet evolution, data in that paper concerning the hydrogen burning limit are from Burrows et al. (1993).
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the last several years. On the other hand, the evolutionary models discussed here are at least

a decade old, and none of them currently incorporates the state-of-the-art in atmospheric

models. The discrepancy is due in part to the lack of observational constraints for evolution-

ary models. While an atmospheric model may be fully tested against an observed spectrum,

testing an evolutionary model requires accurate knowledge of age and mass. The available

evolutionary models are also hindered by the fact that none of them incorporate the latest

revised solar abundances that are used to translate observed metallicity diagnostic features

into the number densities for different species used by the models. The current accepted val-

ues for solar abundances (Caffau et al. 2011) constitutes a reduction of 22% when compared

to the original values used by the evolutionary models discussed here (e.g. Grevesse et al.

1993). We therefore cannot expect any of the models we consider here to be strictly correct,

but comparing their predictions to our results is nevertheless a useful endeavor.

Figures 6.21 through 6.24 show several evolutionary tracks from these models over-plotted

on the luminosity-radius and temperature-radius diagrams. Table 6.6 lists the properties

predicted for the HBMM tracks for the four models. We also include the zero metallicity

model of Burrows et al. (1993), which is listed to illustrate the effect of a reduction in

metallicity. All models except for the unrealistic zero metallicity model predict the hydrogen

burning limit at significantly cooler temperatures and lower luminosities than our values.

The evolutionary tracks of Chabrier et al. (2000) and Baraffe et al. (2003) have reasonable

agreement with the observations for log(L/L⊙) & −3.5, where objects are solidly in the

stellar domain. Chabrier et al. (2000) has also achieved some success in reproducing the
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radii of brown dwarfs with log(L/L⊙) ∼ −4.0, but cannot account for the small radius of

2MASS J0523-1403 and several other stellar objects. And while Burrows et al. (1993, 1997)

seems to accurately predict the radius of the smallest stars, the model radii are too small

everywhere else in the sequence. In sum, we see that at the level of accuracy needed to predict

the entirety of our observations these models are for the most part mutually exclusive.
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Figure 6.21 Evolutionary tracks for the models of (a) Burrows et al. (1997, 1993) and (b) Baraffe et al. (1998) over-plotted
on the luminosity-radius diagram. Dashed lines indicate the continuation of substellar evolutionary tracks where no data are
available. The open circles on the evolutionary tracks represent ages of 0.5, 1.0, 3.0, and 5.0 Gyr from left to right, with the
circles for older ages not in plotting range in some of the substellar tracks. The circles for older ages overlap each other in the
stellar tracks because there is little evolution at those ages. The track corresponding to the hydrogen burning minimum mass
is plotted with a dashed line and has its properties summarized in Table 6.6.
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Figure 6.22 Evolutionary tracks for the models of (a) Chabrier et al. (2000) and (b) Baraffe et al. (2003) over-plotted on the
luminosity-radius diagram. Open dots represent ages of 0.05, 0.10, 0.12, 0.50, 1.00, and 10.0 Gyr, except for the 0.10 M⊙ track,
which starts at 0.10 Gyr. The circles for older ages are not in the plotting range in some of the substellar tracks. The circles
for older ages overlap each other in the stellar tracks because there is little evolution at those ages. The track corresponding to
the hydrogen burning minimum mass is plotted with a dashed line and has its properties summarized in Table 6.6. The models
were computed only at the values where open dot are plotted, with lines connecting the open dots for visualization purposes
only.
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Figure 6.23 Evolutionary tracks for the models of (a) Burrows et al. (1997, 1993) and (b) Baraffe et al. (1998) over-plotted
on the temperature-radius diagram. Dashed lines indicate the continuation of substellar evolutionary tracks where no data are
available. The open circles on the evolutionary tracks represent ages of 0.5, 1.0, 3.0, and 5.0 Gyr from left to right, with the
circles for older ages not in the plotting range in some of the substellar tracks. The circles for older ages overlap each other in
the stellar tracks because there is little evolution at those ages. The track corresponding to the hydrogen burning minimum
mass is plotted with a dashed line and has its properties summarized in Table 6.6.
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Figure 6.24 Evolutionary tracks for the models of (a) Chabrier et al. (2000) and (b) Baraffe et al. (2003) over-plotted on
the temperature-radius diagram. Open dots represent ages of 0.05, 0.10, 0.12, 0.50, 1.00, and 10.0 Gyr, except for the 0.10
M⊙ track, which starts at 0.10 Gyr. The circles for older ages are not in the plotting range in some of the substellar tracks.
The circles for older ages overlap each other in the stellar tracks because there is little evolution at those ages. The track
corresponding to the hydrogen burning minimum mass is plotted with a dashed line and has its properties summarized on
Table 6.6. The models were computed only at the values where open dot are plotted, with lines connecting the open dots for
visualization purposes only.
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Table 6.6: Properties of Evolutionary Models

Model H Burning H Burning H Burning Metallicitya min. Stellar Atmospheric
min. Mass (M⊙) min. Teff (K) min. Log(L/L⊙) Z/Z⊙ Radius (R/R⊙) Properties

Burrows et al. (1993, 1997) 0.0767 1747 −4.21 1.28 0.085 gray with grains
Burrows et al. (1993) 0.094 3630 −2.90 0.00 0.090 metal free
Baraffe et al. (1998) ∼0.072 1700 −4.26 1.28 0.085 non-gray without grains
Chabrier et al. (2000) ∼0.070 1550 −4.42 1.28 0.086 “DUSTY” grains do not settle
Baraffe et al. (2003) ∼0.072 1560 −4.47 1.28 0.081 “COND” clear & metal depleted
Our Results · · · ∼2075 ∼ −3.9 · · · ∼0.086 · · ·

aModels with Z/Z = 1.28 were originally meant as solar metallicity models. The new value takes into account the revised solar metallicities
of Caffau et al. (2011).
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While the differences between our results and model predictions (Table 6.6) may at first

seem large, they must be examined in the context of the recently revised solar abundances

that are 22% lower than the metallicities used to compute the models (Caffau et al. 2011).

Lowering the metal content of a (sub)stellar object has the effect of decreasing opacities both

in the atmosphere and in the interior. The net effect is a facilitation of radiative transfer

from the object’s core to space and thus a decrease in the temperature gradient between

the core and the atmosphere. Because in the low metallicity scenario energy escapes the

stellar core more easily, maintaining the minimal core temperature necessary for sustained

hydrogen burning requires a higher rate of energy generation. As shown by the Z/Z⊙ = 0

model of Table 6.6, the minimum stellar mass, minimum effective temperature, and minimum

luminosity all increase as a result of a decrease in metallicity. The effect of metallicity on the

minimum luminosity is particularly strong. When compared to the Burrows Z/Z⊙ = 1.28

model, the Z/Z⊙ = 0.00 model produces a minimum luminosity that is greater by a factor

of 20.4. Our results suggest a minimum luminosity that is greater than that predicted by

the Z/Z⊙ = 1.28 models by a factor ranging from ∼2.0 to ∼3.2, depending upon the model

chosen. From Figure 4 of Burrows et al. (2011), a lower metallicity would also cause a more

pronounced local minimum in the radius trends we detect in Figures 6.12 and 6.15.

It is interesting to note that if we accept the masses of the several evolutionary tracks

shown in Figures 6.21 through 6.24, then three out of the four models (Burrows et al. 1997;

Baraffe et al. 1998, 2003) show a jump from stellar masses at log(L/L⊙) ∼ 3.9 (Teff ∼ 2075 K)

to masses . 0.050 M⊙ for cooler objects. The Chabrier et al. (2000) models show a slightly
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smaller jump to masses . 0.060M⊙. This interpretation is difficult to reconcile with the idea

of a continuous mass function for substellar objects. Because more massive objects cool more

slowly, we would expect to see more brown dwarfs in the mass range of ∼0.070−0.050 M⊙

than less massive objects occupying the same temperature range. As an example, the mass

function of Allen et al. (2005) predicts the mean mass of spectral type L5 to be 0.067 M⊙,

and yet comparing our results to evolutionary models shows masses . 0.050M⊙ in the L3

temperature range. A discontinuous mass function that produces objects of stellar mass and

then jumps to such low masses without producing the intermediate mass objects is not likely.

Observations and theory could be reconciled by either increasing the masses associated with

the evolutionary tracks or decreasing the radii predicted by our SED fitting technique (§5.6).

We note however that a systematic over-prediction of radius values by our fitting technique

would likely manifest itself in a manner independent of spectral type, and would therefore

also be noticeable in the stellar part of Figures 6.21 through 6.24 and in our comparison to

interferometric radii (Figure 5.4). There remains the possibility that the BT-Settl models

work fine down to temperatures of ∼2100K, but are under-predicting temperatures (and

therefore over-predicting radius) for cooler objects. While this possibility cannot be entire

excluded, we would expect the uncertainties in temperature to be significantly larger for the

cooler objects in comparison to the hotter objects if the models were not working well for

cooler temperatures.

Finally, we note that while our observations do not address the minimum mass for hy-

drogen burning, higher values for mass should also be expected as a result of the downward
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revision in solar abundances. Independent confirmation of this effect through a dynamical

mass study would further enhance the body of evidence we have presented for the end of the

stellar main sequence at values close to those of 2MASS J0523-1402 (L2.5): Teff ∼ 2075K,

log(L/L⊙) ∼ −3.9, (R/R⊙) ∼ 0.086, and V − K = 9.42.

6.7.4 Comparison of Radii With Other Studies

Unfortunately, there are only a few other observational studies that directly measure or

calculate radii for objects in the temperature range considered here. These objects are too

faint to be observed by the Kepler mission except as companions to more massive stars. Their

faintness also means that they are likely to remain outside the domain of long baseline optical

interferometry for the foreseeable future. There are nevertheless several examples of VLM

eclipsing binary companions where the primary star in the system is an early M dwarf or a

solar analogue (e.g., Burrows et al. 2011, and references therein). Such systems are valuable

for comparisons regarding mass and radius, but lack the photometric coverage needed to

calibrate the SED and derive the luminosity in a manner analogous to this work. We note

that the only known eclipsing system where both members are brown dwarfs (Stassun et al.

2006) is a member of the Orion star forming region, and is therefore only a few million years

old. Stassun et al. (2006) measure radii of 0.669±0.034 R⊙ and 0.511±0.026 R⊙ for the two

components. At such a young age and such large radii, this system is a valuable probe of

early substellar evolution, but should not be compared to the much older objects we discuss

in this study.

There have been two recent studies that derive the stellar parameters needed for placing
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objects in the HR diagram. As already mentioned, Konopacky et al. (2010) derived effective

temperatures that agree with our values for early L dwarfs but steadily diverge as the tem-

perature increases (§6.3, Figure 6.6), and their errors are ∼200K. Although their data are

limited at temperatures cooler than ∼2000K for the determination of a robust radius trend,

they also have a local minimum in radius at Teff = 2075 K, for 2MASS J2140+16B, consis-

tent with our results. More recently, Sorahana et al. (2013) derived radii for several L and T

dwarfs based on AKARI near infrared spectra. They report a sharp radius minimum of 0.064

R⊙ at 1800K. Figure 6.25 shows their results over-plotted in our temperature-radius plot.

While the results are interesting, we note that they derived the effective temperature and

did SED fits based on near infrared spectra only and thus were not able to take advantage of

the strong dependence of optical colors on temperature (§5.5). Their effective temperatures

agree to other studies for most objects but are higher by as much as a few hundred K when

compared to Golimowski et al. (2004b) and Cushing et al. (2008) for objects corresponding

to the sharp drop in radius, indicating that the small radii may be compensating by an

over-estimation of temperature.

6.8 Notes on Individual Objects

GJ 1001BC (L4.5 ID# 1) is a binary L dwarf with nearly equal luminosity components

(Golimowski et al. 2004a). Golimowski et al. (2006, 2007) report a preliminary total system

dynamical mass of 0.10M⊙ based on orbital mapping using HST and VLT. The conservative

assumption of a mass ratio ≥3:2 based on nearly equal luminosity would make individual
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Figure 6.25 Data from Sorahana et al. (2013) (open circles) over-plotted on our temperature-radius diagram. Their radius
minimum at 1800K is probably a result of their unrealistically high temperatures for these objects.

masses range between 0.04M⊙ and 0.06M⊙, thus placing both objects in the brown dwarf

regime. We derive Teff = 1725 ± 21 and log(L/L⊙) = −4.049 ± 0.48 for each component,

assuming the two objects are identical. These numbers are generally above the hydrogen

burning limit numbers predicted by models but below our numbers (Table 6.6). This inconsis-

tency is further evidence that the hydrogen burning limit must happen at higher luminosities

and temperatures than what is predicted by the currently accepted models.

LEHPM1-0494 A (M6.0V ID# 3) and B (M9.5V ID# 2) are reported by Caballero

(2007) to be a wide common proper motion binary with separation of 78′′. We report

trigonometric parallaxes for both components based on individual reductions of the same
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field of view, and derive distances of 26.88+1.51
−1.36 pc for the A component and 25.14+1.40

−1.26 pc

for the B component for a projected separation of ∼2100 AU. These trigonometric distances

are in good agreement with Caballero’s distance estimate of 23±2 pc and support his claim

of a physical association between these two objects.

LHS 1604 (M7.5V ID# 12) was first reported by Cruz et al. (2007) as being over-

luminous by ∼0.6 magnitudes in J . They suggested that the near-infrared photometry is

consistent with an unresolved M7.5V/M9.0V binary. LHS 1604 is the only star in our sample

for which we were not able to calculate Teff or perform an SED fit using the procedures

outlined in §§5.5 and 5.6 − the fits diverged due to a large infrared excess. We observed LHS

1604 using high resolution laser guide star adaptive optics on Gemini North and preliminary

results do not show a resolved companion. We defer a thorough analysis of this target to a

future publication where we discuss our high resolution observations and use them to place

limits on the properties of the putative companion (Dieterich et al. in preparation). We

are also monitoring LHS 1604 for astrometric perturbations but it is too early to notice any

trends.

2MASS J0451-3402 (L0.5 ID# 15) has the highest photometric variability in our

sample. It was first noted as a photometrically variable target by Koen (2004), who re-

ported a sinusoidal trend with a period of 3.454 days and mean amplitude of ∼1% (10

milli-magnitudes), though varying to as high as 4% (40 milli-magnitudes). While our ob-

servations do not have the cadence necessary to obtain phase information, the variability of

51 milli-magnitudes in the I band we detect is in agreement, if not somewhat higher, with
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that of Koen (2004). It is interesting to note the spike in variability around Teff ∼ 2100 K in

Figure 6.10. Further investigation is needed to determine whether this trend has a physical

cause associated with that temperature range or whether this is a coincidence.

2MASS J0523-1403 ( L2.5 ID# 17) is discussed throughout this chapter as the

object closest to the local minimum in the luminosity-radius and temperature-radius trends

(Figures 6.12 and 6.15). As we discussed in §6.7, there is strong evidence indicating that the

end of the stellar main sequence must lie in its proximity in parameter space. The target has

been described as having variable radio and Hα emission (Berger 2002; Antonova et al. 2007;

Berger et al. 2010). Despite the common association between Hα emission and youth, we

note that it is difficult to conceive of a target with such a small radius (R/R⊙ = 0.086±.0031)

as being young. As discussed in §6.5, radio emission is often used as a probe of magnetic

fields, and may be accompanied by optical variability if they result in auroral phenomena.

We detect no significant I band variability for 2MASS J0523-1403 (upper limit ∼11.7 milli-

magnitudes ), meaning that either the star was in a mostly quiescent state during the ∼3

years for which we monitored the target (2010.98−2013.12) or that the link between radio

emission and I band variability is not universal.

SSSPM J0829-1309 ( L1.0 ID# 23) is an object very similar to 2MASS J0523-1403

but slightly more luminous. The two objects have 1σ uncertainties that overlap in radius

and Teff , but not luminosity. As shown in Figure 11, the location of SSSPM J0829-1309

is crucial for establishing 2MASS J0523-1403 as being close to the minimum of the radius

trends. Taken together, 2MASS J0523-1403 and SSSPM J0829-1309 show that the radius
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trends in Figures 6.12 and 6.15 are real and therefore the conclusions we draw in this paper

are not the result of one isolated odd object (i.e., 2MASS J0523-1403).

LHS 2397aAB (M8.5V (joint) ID# 35) is an M8.0V/L7.56 binary (Freed et al.

2003). Dupuy et al. (2009) report a total system dynamical mass of 0.146+0.015
−0.013 M⊙.

Konopacky et al. (2010) derive individual dynamical masses of 0.09±0.06 M⊙ for the pri-

mary and 0.06±0.05 M⊙ for the secondary. The system is therefore an important probe

of the hydrogen burning mass limit because two coeval components presumably with the

same metallicity lie on opposite sides of the stellar/substellar boundary. We are mapping

the astrometric orbit for this system in a manner similar to that discussed in §6.6 for DE-

NIS J1454-6604AB and will publish refined individual dynamical masses as soon as orbital

mapping is complete.

LEHPM2-0174 (M6.5V ID# 40) appears over-luminous in Figure 6.3. It is most

likely an unresolved multiple, a young object, or both. We note that we could not determine

a reliable source for the spectral type of this object, thus leaving open the possibility that it

has been miss-characterized as an M6.5V. LEHPM2-0174 is excluded from Figures 6.12 and

6.15 because scaling the figure to fit its radius (0.173R⊙) would make the figure difficult to

read.

Kelu-1AB (L2.0 (joint) ID# 41) is a well known L2/L4 binary (Liu & Leggett

2005b). That study notes that the presence of LiI λ6708 makes both components substel-

lar with masses . 0.06 M⊙ according to the lithium test of Rebolo et al. (1992), although

they note that the LiI λ6708 detection is tenuous. Deconvolution of this system would

6infrared spectral type for secondary
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provide important information about the hydrogen burning limit due to its location in the

temperature-radius trend (Figure 6.15). If we assume that the system is an equal luminosity

binary, then the deconvolved radii of the components are ∼0.089 M⊙. That number would

further constrain the position of 2MASS J0523-1309 as being in the minimum of the radius

trend. However, because the components of Kelu1-AB do not have equal luminosities, we

can expect the A component to be a more massive brown dwarf or a stellar component with

mass just above the hydrogen burning limit. In either case, the A component would have a

smaller radius than the B component. Determining the precise radius, Teff and luminosity of

the A component is crucial for determining the exact location of the point of minimal radius

in Figure 6.15.

2MASS J1705-0516AB (L0.5 (joint) ID# 56) was first reported as an M9V/L3

binary by Reid et al. (2006). The system’s position in the midst of the main sequence in

the HR diagram (Figure 6.3) shows that the system is dominated by the A component

in luminosity. Our parallax observations detect a clear astrometric perturbation. We are

working on mapping the system’s orbit and will soon be able to publish dynamical masses for

the individual components. Like LHS 2397aAB, this system will serve as a crucial benchmark

system with components likely residing on either side of the stellar/substellar boundary. As

indicated in Figure 6.10, this target has one of the largest optical variabilities in the sample,

at 41 milli-magnitudes in I. We defer a more thorough discussion of 2MASS J1705-0516AB

to a future paper (Dieterich et al. in preparation).

SIPS J2045-6332 (M9.0V ID# 58) is an extremely over-luminous object (Figure
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6.3). We note that unresolved equal luminosity duplicity alone cannot explain the over-

luminosity. The object is also highly variable at 39 milli-magnitudes in I, as shown in Figure

9. The variability suggests that youth may play a role in explaining the over-luminosity of

SIPS J2045-6332.

LHS 4039C (M9.0V ID# 62) is a member of a triple system with an M4V−M9V bi-

nary with separation 6′′ and a DA white dwarf 103′′ away (Scholz et al. 2004; Subasavage et al.

2009). Subasavage et al. (2009) reported the trigonometric parallax for the white dwarf com-

ponent as 42.82±2.40 mas. In this paper we have reduced the same data using LHS 4039C

as the science target and measure a parallax of 44.38±2.09, thus supporting the physical as-

sociation of the system. The intriguing combination of a white dwarf and a VLM star in the

same system allows us to constrain the properties of LHS 4039C based on the better under-

stood models of white dwarf evolution. Based on the white dwarf cooling time of 0.81±0.05

Gyr (Subasavage et al. 2009) and the progenitor age of 4.4±3.7 Gyr (Iben & Laughlin 1989)

assuming a progenitor mass of 1.17±0.26M⊙ (Williams et al. 2009), we infer a total system

age of 5.2±3.7 Gyr. Assuming the system to be coeval, LHS4039C is then a main sequence

star with no remaining traces of youth. Its locus on the HR diagram is therefore an indication

of where the VLM stellar main sequence lies.
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CHAPTER 7

The Gemini Adaptive Optics High Resolution Imaging Survey

This chapter presents a pilot study to obtain resolved images of close separation (< 1′′)

binaries that have the potential to eventually yield dynamical masses, and provide other

insights into the nature of VLM stars and brown dwarfs. The target list for this project

consists of objects for which an astrometric perturbation was previously detected through

CTIOPI, or previously resolved binaries for which establishing ∆JHKs magnitudes would

allow for a further characterization of the components (Table 7.1). Due to the need to map

the entire photocentric orbits of targets with astrometric perturbations before establishing

dynamical masses, the project was conceived from the beginning as a long term project that

draws on the results of previous efforts and will also contribute to the future results of other

projects. In this dissertation we focus on describing the techniques used for high resolution

observations and listing our detections. A thorough analysis and characterization of the

resolved components is reserved for a future paper.

7.1 Introduction

Mass is the most fundamental parameter governing the structure and evolution of any stellar

or substellar object. It is therefore desirable to directly measure the masses of as many objects

as possible when characterizing a particular population. A model independent measurement

of mass can be obtained by analyzing the motions of binary stars, where orbital parameters
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can be related to mass by Kepler’s third law:

(m1 + m2) =
a3

p2
,

where m1 and m2 are the masses of the two components of the binary, a is the semi-major

axis of the relative orbit of the secondary star around the primary star, and p is the orbital

period. If the masses are entered in units of solar masses (M⊙), and a is entered in AU, then

p is in units of Earth years. Further, if each individual component can be established with

respect to the system’s barycenter, then

a = a1 + a2

where a1 and a2 are the semi-major axes of the orbits of the primary and secondary compo-

nent, respectively, and

m1a1 = m2a2 .

The last equation can then be solved simultaneously with Kepler’s third law to yield the

masses of individual components.

For VLM stars and brown dwarfs, orbits with time scales suitable for dynamical mass

determination (. 10 yrs) have semi-major axes in the order of a few AU, which translates

to angular separations . 0.2′′ for the solar neighborhood (distance within ∼20 pc). This

separation regime is well suited for investigation with adaptive optics (AO) systems on 8

meter class telescopes, which can typically obtain diffraction-limited images in the near
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infrared, with angular resolutions as good as ∼0.065′′. AO imaging also has the advantage of

providing photometric information if the object is resolved through several different filters,

and can be used for astrometry if the image quality and separations allow for centroiding of

the individual components of a binary. AO imaging is also a particularly powerful technique

when it is used to resolve the components of astrometric binaries in which the orbit of the

system’s photocenter has been established with respect to the background of distant “fixed”

stars. In that case, a single resolved AO observation is all that is necessary for obtaining the

system’s mass ratio, and therefore obtaining the masses of the individual components.

We have performed an AO campaign using the Near Infra-Red Imager (NIRI) instrument

coupled with the ALTtitude conjugate Adaptive optics for the InfraRed (ALTAIR) AO module

on the Gemini North telescope in order to resolve systems for which astrometric perturbations

were detected through CTIOPI, as well as previously known binary systems that lacked

resolved near infrared photometry. In total, 37 targets were imaged. We were able to

obtain resolved images for 19 targets while 12 targets yielded null detection. Images for

the remaining six targets have not yet been analyzed. Out of the 19 resolved targets, five

had their multiplicity confirmed for the first time through this study. The remaining 14

had previously been confirmed as binaries through observations with HST’s Fine Guidance

Sensors (FGS) or infrared speckle imaging (Henry & McCarthy 1993; Henry et al. 1999). We

provide an overview of astrometric binaries in §7.2 to motivate the observations, describe

the Gemini AO observations in §§7.3 and 7.4, discuss preliminary results in §7.5. We discuss

what is left to do and the future of this project in §7.6.
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7.2 Astrometric Binaries − an Overview

The process of measuring a trigonometric parallax is in essence the measurement of the

science star’s minute motion with respect to a background field of distant “fixed” stars

(§§5.4, 6.2). The resulting motion is a combination of the heliocentric tangential motion of

the science target arising from Galactic kinematics (the proper motion), the reflex motion

arising from Earth annual heliocentric motion (the trigonometric parallax itself), and any

remaining motion arising from the orbital motion of the science target if it is a multiple

system. The latter is observed in the form of an astrometric perturbation to the residuals

of the science target’s photocentric displacement with respect to the background stars once

the proper motion and the trigonometric parallax have been calculated and subtracted. If

sufficient epochs have been observed, the astrometric perturbation traces out the relative

orbit of the system’s photocenter with respect to the fixed barycenter. Figure 7.1 shows two

examples of what astrometric residuals look like after the parallax motion and the proper

motion have been subtracted. The first case shows the astrometric residuals for LP 944-

020 for which residuals in both coordinate axes are small and do not form any pattern.

The second case shows the residuals for GJ 1215ABC, where a large and clear sinusoidal

perturbation indicative of orbital motion is present in both axes.
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(a)

(b)

Figure 7.1 Astrometric residuals for (a) LP 944-020, and (b) GJ 1215ABC. Note the different plotting scales for the two
objects in the vertical axes. The residuals represent the motion of the target’s photocenter with respect to the background of
distant stars after the components of motion due to the proper motion and the trigonometric parallax have been subtracted.
Panel (a) shows small residuals randomly distributed about zero in both coordinate axes, and is typical of a good parallax
solution. Panel (b) shows a clear sinusoidal perturbation indicative of the orbital motion of an unresolved multiple system’s
photocenter about the system’s barycenter. Each data point and its error bars represents the mean and standard deviation of the
typically five consecutive observations taken in a single night. If enough observations are taken, the astrometric perturbations
can be used to map out the photocenter’s orbit, as is the case with GJ 1215ABC.
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7.2.1 From Photocentric Orbits to Component Masses

In order to understand how the observed photocentric orbit arises from a physical binary

configuration it is useful to first consider the extreme cases of binaries with large differences

in luminosities as well as equal luminosity binaries. Consider first a system in which the two

components have a small mass ratio (i.e., one component is much more massive than the

other) and that the secondary’s contribution to the overall luminosity is also negligible. The

system’s photocenter is therefore effectively at the same location as the primary component,

which contributes almost all the light in the band through which observations were taken.

Both components orbit the system’s barycenter, which is very close to the location of the

primary component. The resulting motion of the photocenter then maps out the small

orbital motion of the primary component. Consider also the case of a binary system where

the components have equal mass and equal luminosity. In that case the system’s barycenter

is located exactly half way between the two components, and the components’ motions are

equal and opposite to each other. In this case both components have large displacements

about the system’s barycenter, but because the light distribution is always symmetric about

the barycenter, the system’s photocenter does not move, and no astrometric perturbation is

detected.

Now consider the case where the components’ luminosities are slightly different. The sys-

tem’s photocenter is then slightly offset from the barycenter toward the direction of the more

luminous component, and a small astrometric perturbation is detected. Because unresolved

observations give us no information about the components’ luminosity ratio or physical sep-
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aration, obtaining the mass ratio from a photocentric orbit is a degenerate problem − the

same solution may be assigned to a low luminosity ratio system where the primary com-

ponent moves little, but carries with it most of the system’s light, or to a high luminosity

ratio system where both components have a large motion about the barycenter, but because

the difference in luminosity between the two components is small the photocenter is only

slightly offset from the barycenter. Figure 7.1(a) could therefore correspond to an equal

luminosity binary or to a single star. In the same manner, Figure 7.1(b) could correspond to

a system in which the two components’ masses and luminosities are only slightly different,

or to a very low mass and luminosity ratio system where one component clearly dominates

the photocenter1.

As outlined in e.g., McCarthy et al. (1991), the degeneracy discussed above can be broken

and a unique solution for the system’s mass ratio can be obtained if the system’s luminosity

ratio and projected physical separation are known at a single epoch, so long as the photo-

centric orbit is also known. Suppose that in a resolved image the components’ separation,

p, is measured, as well as the fluxes of the two components. The following quantities can

then be defined:

β =
F2

F1 + F2

where F1 and F2 are the fluxes of the primary and secondary components, respectively.

1Overluminosity is often detected in a color-magnitude diagram. In the equal luminosity case, the offset
is 0.7 mag.
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Similarly, we define the secondary’s fractional mass as

B =
M2

M1 + M2

and ρ as the system’s photocentric perturbation at the epoch at which p was measured.

The ratio p/ρ is then a scaling factor between the photocentric orbit and the barycentric

orbit. The system’s mass ratio B can then be related to the known luminosity ratio β by

the equation

p

ρ
=

1

B − β
.

We can then solve for B and apply the previous equation in combination with Kepler’s third

law to yield the masses of the individual components.

The fractional luminosity ratio β should in principle be measured in the same band

that was used for mapping the photocentric orbit. In practice, the trigonometric parallax

observations are performed in one of the optical bands V , R, or I, and the Gemini/NIRI

observations were performed through bands J , H , and Ks, or their narrow band equivalents

in cases where the targets were too bright for observing through broad bands. The flux ratios

measured in the Gemini/NIRI observations can be converted to optical flux ratios using the

relations in Table 6.5, with care taken to propagate the uncertainties associated with each

relation.
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7.3 Gemini/NIRI Observations

Data were collected through observing programs GN-2009A-Q-94, GN-2009B-Q-10, GN-

2010B-Q-9, and GN-2011A-Q-26. In total, 19.2 hours of Gemini time were allocated through

NOAO. Observations were carried out in queue mode. In most cases the science target was

bright enough to serve as its own natural guide star. The targets ranged in brightness from

K ∼ 5.0 to K ∼ 11.0, making some of the targets extremely bright for an 8 meter tele-

scope. Fortunately, the NIRI array allows exposures as short as 0.020 s to be added in

non-destructive co-adds, thus allowing for very high signal-to-noise while preventing satura-

tion. The plate scale achieved with the f/32 camera is 0.0219′′ pixel−1 and the field of view

is 11.2′′. Observations were taken using a 3×3 dither pattern with 4.0′′ steps through filters

J , H , and Ks. For bright targets, narrow band filters were used to avoid saturation. The

full observing sequence for a single target lasted from 15 to 40 minutes, including overheads.

Adaptive Optics correction was done using the ALTAIR facility level AO system, which

sends a wavefront corrected beam to NIRI. ALTAIR can use the science target as a guide

star for full wavefront sensing in cases where V .15, and requires the use of the Laser Guide

Star for fainter optical magnitudes. The laser guide star was used for 12 out of the 37 targets

observed. The typical FWHM for a well-exposed PSF in the K band is ∼ 0.065′′ in Natural

Guide Star observations. The image quality is somewhat worse and more variable (FWHM

∼0.07′′ to ∼0.1′′) when the Laser Guide Star is used.
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7.4 Searching for Companions

Because most observations consisted of co-adding very short exposures, the resulting images

often had strong speckle patterns. Figure 7.2 shows the unresolved image of LHS 1050.

The speckle pattern around the image often mimics the profile of real companions, making

companion identification difficult for low signal to noise observations. The situation can be

ameliorated by looking at the individual dither images before they are coadded, and trying to

determine whether or not a potential companion is constantly appearing in all nine images.

The speckle pattern and NIRI’s PSF are wavelength dependent, so even if a particular image

artifact is present in several co-adds, it should shift places when comparing images taken

with different bands, whereas a real astronomical source will stay in the same position. If a

potential companion is detected, we then checked wide field images and traced the primary

target’s proper motion to make sure that the detection was not a background star.

Figure 7.2 Gemini/NIRI image for LHS 1050, an unresolved source. The central image is surrounded by speckles and image
artifacts that may mimic the profiles of faint companions.
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Given NIRI’s f/32 plate scale of 0.0219′′ pixel−1 and the ∼0.065′′ resolution typically

achieved with AO correction, a low contrast companion could be unambiguously detected

if its centroid was three pixels away from the primary source so that a saddle point of at

least one pixel existed between the two sources. Because ALTAIR’s performance varies from

image to image, it is not possible to assume a generic PSF for PSF subtraction, as done in

the HST/NICMOS case (§3.3), to probe to closer separations that ∼0.065′′. The sensitivity

to high contrast companions is more difficult to generalize due to the presence of speckles,

which are present to a varying degree depending on exposure time and ALTAIR performance.

As discussed in §7.5 we were able to detect companions with contrast as high as ∆K ∼4.6

mag at a separation of 0.25′′; however, this case should not be taken as a generalization of

the search’s detection capability − every AO image is unique.

7.5 Results

Table 7.1 lists the results for all 31 targets that have been analyzed, with those targets for

which a companion was detected listed first. All separations and delta magnitudes listed in

Table 7.1 are approximate and are pending final reductions.

Table 7.1: Gemini AO Results

Name R. A. Dec. Joint Spectral V Archive Guide Star Filter Companion First Separation ∆K

Type mag. Code Typea Typeb Detected? Detection? (arcsec)
GJ 1005AB 00 15 28 −16 08 01 M3.5V 11.48 GN-2009B-Q-10-200 N Na Yes No 0.24 1.1
GJ 2005BC 00 24 44 −27 08 24 M5.5V 15.28 GN-2009B-Q-10-208 L B Yes No 0.46 0.2
GJ 65AB 01 39 01 −17 57 01 M5.0V 12.96 GN-2009B-Q-10-218 N Na Yes No 2.10 0.1

LHS 1630AB 04 07 20 −24 29 13 M3.5V 12.38 GN-2009B-Q-10-241 N B Yes No 0.98 0.3
GJ 234AB 06 29 24 −02 48 00 M4.0V 11.12 GN-2009B-Q-10-253 N Na Yes No 1.02 1.6

GJ 2069AED 08 31 37 +19 23 39 M4.0V 11.93 GN-2009B-Q-10-265 N Na Yes No 0.62 3.1
GJ 2069BC 08 31 37 +19 23 49 M4.0V 14.83 GN-2009B-Q-10-429 N B Yes No 0.97 0.5
LHS 2071AB 08 55 20 −23 52 15 M4.0V 13.88 GN-2009B-Q-10-273 N B Yes Yes 0.22 1.3
LHS 6167AB 09 15 36 −10 35 47 M4.5V 13.82 GN-2009B-Q-10-277 N B Yes No 0.18 ∼0.0
WT 1827AB 10 43 02 −09 12 41 M5.5V 15.10 GN-2009B-Q-10-282 L B Yes No 0.40 0.4

LHS 2397AAB 11 21 49 −13 13 08 M7.5V 19.58 GN-2010B-Q-9-40 L B Yes No 0.27 2.4
GJ 473AB 12 33 17 +09 01 15 M5.0V 12.47 GN-2009B-Q-10-292 N Na Yes No 0.44 ∼0.0

GJ 1215ABC 17 17 44 +11 40 11 M5.0V 15.07 GN-2009B-Q-10-306 L B Yes Yes 0.25 4.6
LTT 7434AB 18 45 58 −28 54 54 M4.0V 12.69 GN-2009B-Q-10-323 N B Yes Yes 0.12 3.5
LHS 501AC 20 55 37 −14 02 08 M4.0V 12.49 GN-2009B-Q-10-328 N Na Yes Yes 0.07 0.2

Continued on next page
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Name R. A. Dec. Joint Spectral V Archive Guide Star Filter Companion First Separation ∆K

Type mag. Code Typea Typeb Detected? Detection? (arcsec)
GJ 831AB 21 31 18 −09 47 26 M4.0V 12.02 GN-2009B-Q-10-335 N Na Yes No 0.24 1.1

LHS 3738AB 21 58 49 −32 26 27 M4.5V 15.80 GN-2009B-Q-10-341 N B Yes Yes 0.11 1.0
GJ 866AB 22 38 33 −15 17 59 M5.0V 12.39 GN-2009B-Q-10-346 N Na Yes No 0.13 0.4

LHS 4009AB 23 45 31 −16 10 18 M4.5V 14.38 GN-2010B-Q-9-43 N B Yes No 0.55 0.1
LHS 1050 00 15 49 +13 33 22 M3.0V 12.62 GN-2009B-Q-10-213 N Na No · · · · · · · · ·

BRI 0021-0214 00 24 24 −01 58 20 M9.0V 19.88 GN-2010B-Q-9-100 L B No · · · · · · · · ·

LHS 1302 01 51 04 −06 07 05 M4.5V 14.49 GN-2009B-Q-10-419 N B No · · · · · · · · ·

LHS 1582 03 43 22 −09 33 51 M4.5V 14.69 GN-2009B-Q-10-424 N B No · · · · · · · · ·

LHS 1604 03 51 00 −00 52 45 M7.0V 18.07 GN-2009B-Q-10-234 L B No · · · · · · · · ·

G 99-049 06 00 03 +02 42 23 M3.5V 11.31 GN-2009B-Q-10-246 N B No · · · · · · · · ·

SCR 1107-3420B 11 07 50 −34 20 59 WD 13.66 GN-2009B-Q-10-287 N B No · · · · · · · · ·

GJ 433 11 35 26 −32 32 23 M2.0V 9.82 GN-2009A-Q-94-42 N Na No · · · · · · · · ·

GJ 494 13 00 46 +12 22 32 M1.0V 9.73 GN-2009B-Q-10-300 N Na No · · · · · · · · ·

GJ 678.1 17 30 22 +05 32 54 M1.0V 9.32 GN-2009B-Q-10-311 N Na No · · · · · · · · ·

LHS 3376 18 18 57 +66 11 33 M4.5V 13.46 GN-2009A-Q-94-79 N B No · · · · · · · · ·

LP 876-010 22 48 04 −24 22 07 M4.0V 12.59 GN-2009B-Q-10-353 N B No · · · · · · · · ·

Of the 19 multiples we were able to resolve, five have been resolved for the first time, and

hence their multiplicity is confirmed through this program. The newly resolved multiples are:

LHS 2071AB, GJ 1215ABC, LTT 7434AB, LHS 501AC, and LHS 3738AB. The remaining

previously known resolved multiples were placed in this observing program so that ∆JHKs

could be established. In a future phase of this project, having ∆JHKs will enable the

estimation of each component’s optical magnitudes by using the relations listed in Table 6.5,

thus providing the luminosity ratios necessary for obtaining individual component masses

from the photocentric orbits (§7.2.1).

We now discuss the five newly confirmed binaries.

7.5.1 LHS 2071AB

LHS 2071AB was first reported as a photocentric astrometric binary in Riedel et al. (2010).

That work estimated a period of 16.4±2.8 years for this system but noted that because the

orbit had not finished a complete cycle the estimate was highly uncertain. Figure 7.3 shows

aL = Laser Guide Star. N = Natural Guide Star
bB = Regular (broad band) JHKs. Na = Narrow band equivalents.
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an updated astrometric perturbation as well as the resolved Ks band image from Gemini.

The joint spectral type is M4.0V. From the estimated ∆Ks ∼ 1.3 and the joint magnitude

of Ks = 8.20 from 2MASS, we estimate Ks = 9.8 for the secondary companion. Given the

system’s trigonometric parallax of 68.81 mas (14.53 pc, Riedel et al. 2010), the secondary’s

absolute K magnitude is 9.0. This absolute magnitude puts the companion in the M9V to

L0 spectral type range. The projected angular separation for the resolved image is ∼0.22′′,

which translates to a projected physical separation of 3.2 AU. As shown in 7.3(a), the system

has now been monitored for ∼13 years. If the period suggested by Riedel et al. (2010) is

correct, we should be able to derive dynamical masses in an additional ∼4 years, once the

orbit wraps in our data.
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(a)

(b)

Figure 7.3 (a) Astrometric perturbation and (b) resolved Ks band image for LHS 2071AB. The separation is approximately
0.22′′ and ∆Ks ∼ 1.3. From the astrometric perturbation, Riedel et al. (2010) estimate a period of 16.4±2.8 years.
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7.5.2 GJ 1215 ABC

GJ 1215 is an M5.0V (joint) star with a large and clear astrometric perturbation shown in

Figure 7.1(b). The trigonometric parallax of 79.76 mas (CTIOPI/RECONS, unpublished)

places the star at 12.54 pc. While the astrometric perturbation shown in Figure 7.1(b) is

unequivocal, detecting the companion proved difficult, with both HST/FGS and infrared and

optical speckle observations yielding null results. Although initial analysis of the Gemini AO

images also seemed to show no companion, a more careful examination of the image revealed

what is likely a triple system with two closely separated components orbiting the primary at

a projected separation of ∼0.25′′, or 3.1 AU. Figure 7.4 shows the results. The duplicity of

the secondary component was inferred in most of the nine individual images taken through

each band before co-adding them, thus lending a high degree of confidence to the existence

of the C component. The projected separation between components B and C is ∼0.076′′, or

∼1.0 AU. Approximating the luminosities of both components as equal and approximating

∆Ks(A−BC) ∼ 4.6, the B and C components would have absolute magnitudes of Mk ∼ 12.3,

making them mid to late L dwarfs. The perturbation in Figure 7.1(b) has a period of ∼9.5

yr, and is now sufficiently sampled for mapping the orbit of the joint BC component around

the A component. Once the orbits of the B and C components are mapped, that orbit will

provide an independent verification of the total mass of the BC component. We will propose

for more AO observations to continue to map the orbits of this exciting triple system, with

emphasis on determining the orbits of the B and C components.
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(a) (b)

(c)

Figure 7.4 Discovery images for GJ 1215 BC. Figure (a) is a Ks band image showing the unresolved BC component enclosed
with a circle. Figure (b) shows the contour plot in the H band, indicating a peak flux difference of ∼6% between the B and C
components. The A component is off the plot to the lower left. Figure (c) shows the H band surface plot, where the peaks of
the B and C components are visible in front of the rise in flux caused by the A component. The A-BC projected separation is
∼0.25′′, or ∼3.1 AU. The B-C projected separation is ∼0.076′′, or ∼1.0 AU.
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7.5.3 LTT 7434AB

LTT 7434 is an M4.0V (joint) star for which we compute a parallax of 54.92 mas (18.21 pc,

CTIOPI/RECONS, unpublished). The parallax residuals are shown in Figure 7.5, where a

long term astrometric perturbation is visible. Unfortunately, the system was not monitored

between 2004 and 2010. The perturbation is therefore still in the early stages of being

mapped and a characterization of the orbit is still not possible.

Figure 7.5 Astrometric perturbation for LTT 7434AB. Unfortunately, the system was not monitored between 2004 and
2010. While the perturbation is evident in both axes, more observations are needed to constrain the period and other orbital
properties.

The Gemini AO observations revealed a faint companion at a projected separation of ∼0.12′′

(2.2 AU), ∆J ∼ 2.5, and ∆H ∼ 3.5. The companion was not detected in the Ks band. The

small separation and relatively high contrast of this system hinders the precise determination

of flux ratio, and there is a large uncertainty in the magnitude differences quoted here.

Assuming these values, we calculate J − H ∼ −0.6 for the companion. The blue J − H ,
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color along with the non-detection in the Ks band suggest that the companion is a T dwarf.

Figure 7.6 shows the image and plots for the system. The low signal-to-noise of the detection

is evident in the surface plot. We will propose for further AO imaging of this system with

longer exposure times in the hope of obtaining a better signal-to-noise for the companion,

and detecting orbital motion.

(a) (b)

(c)

Figure 7.6 Discovery images for LTT 7434AB. Figure (a) is a J band image showing the faint B component enclosed with
a circle. Figure (b) shows the contour plot in the J band with the flux ceiling set just above the B component’s peak flux
to facilitate viewing. Figure (c) shows the J band surface plot, also with a low flux ceiling. The low signal-to-noise for the
companion is evident from Figure (c).
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7.5.4 LHS 501AC

LHS 501A is an M4.0V star with a new parallax of 81.82 mas (12.22 pc, CTIOPI/RECONS,

unpublished). The system is a known wide binary, with the B component (LHS 500, M5.0V)

located at a projected separation of 107′′, or ∼1300 AU. The trigonometric parallax of the A

component has a perturbation indicative of a close binary. The Gemini AO images revealed

a very close and relatively bright companion, with projected separation ∼0.07′′ (0.9 AU),

and ∆ JHKs ∼ 0.3. The separation is close to the diffraction limit for Gemini and the

peaks of each component are only 3 pixels apart, thus making the value for separation very

uncertain. Figure 7.7 shows the astrometric perturbation, the contour plot, and the surface

plot for the system. Like LTT 7434AB, there is a gap in the astrometric coverage that

makes determining the orbital period still not possible, although the declination axis hints

at a period of ∼2 years. The relatively small and almost constant flux ratio indicates that

the companion is likely a mid to late M dwarf.

7.5.5 LHS 3738AB

An astrometric perturbation for the M4.5V star LHS 3738 was first reported in Riedel et al.

(2010). That work reported a parallax of 50.87 mas (19.67 pc) and a preliminary period of

5.8±0.2 years for the photocentric orbit. LHS 3738 is itself a member of a wider system in

which LHS 3739 (M3.5V) is the primary component, thus making this system a hierarchical

triple system. Riedel et al. (2010) reported a projected separation of 113.1′′, or 2225 AU,

between LHS 3739 and LHS 3738. We were able to resolve the LHS 3738 system into its
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(a)

(b) (c)

Figure 7.7 (a) Astrometric perturbation, (b) contour plot, and (c) surface plot for LHS 501AC. The astrometric perturbation
has a large gap in monitoring between 2003 and 2009. The declination axis shows hints of a period of ∼2 years, but more
repetitions are needed to determine the a reliable period. The projected separation is only ∼0.07′′ (0.9 AU), which makes
determining the exact location of each peak difficult. Figure (c) is rotated 90◦ from Figure (b) so that the companion can be
seen.
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(a)

(b)

Figure 7.8 (a) Astrometric perturbation and (b) Ks band resolved image for LHS 3738BC. From the astrometric pertur-
bation, Riedel et al. (2010) estimate an orbital period of 5.8±0.2 years. The projected separation is ∼0.11′′, or 2.2 AU. As can
be seen from (a), the system has been monitored for more than two orbital periods, thus making it ripe for dynamical mass
determination.
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A and B components in all three bands, and estimate a projected separation of ∼0.11′′, or

2.2 AU. Figure 7.8 shows an updated version of the astrometric perturbation first reported

in Riedel et al. (2010) and the resolved Ks band image. We estimate ∆JHKs ∼ 1.0, which

would make the companion a mid to late M dwarf.

As can be seen if Figure 7.8(a), the photocentric orbit of LHS 3738AB has already been

monitored for more than two orbital periods and is therefore an ideal case for the derivation

of dynamical masses using the procedures outlined in §7.2.1. The work to derive definite

orbital parameters and masses for this system will commence soon and we plan to publish

individual masses in a future paper.

7.6 The Future of the Gemini AO Project

In this chapter we provided an overview of the motivation for combining astrometric moni-

toring through trigonometric parallax observations with high resolution imaging in order to

obtain dynamical masses. We also confirmed the existence of companions to five systems

that were resolved for the first time as a result of this project. All measurements we report

here are preliminary and are pending a more thorough reduction of the AO images and

formal orbital fitting in the cases where enough astrometric coverage exists to determine

orbital parameters. The next steps depend on the nature of each target with regard to

what is already known about it and what can be known given the current data. For this

purpose, it is useful to group the targets of this study into three broad categories: (1) the

five systems that have been resolved for the first time as a result of this study, (2) previously
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resolved systems that do not yet have dynamical masses determined, and (3) systems that

already have dynamical masses. We now briefly examine what can be done to maximize

the scientific potential of each of these groups. The scientific issues listed below will be ad-

dressed in an upcoming paper that will also provide a general overview of the project. After

that, smaller papers that further characterize individual systems will follow as the dynamical

masses become available.

7.6.1 First Detections

These five targets were presented in the preceding section. While only GJ 1215ABC and LHS

3738AB have enough astrometric coverage to yield dynamical masses at this point, there is

intrinsic value in the publication of all five systems because they have been confirmed for the

first time as a result of this study. The fact that we now have resolved JHKs photometry

also means that the near infrared colors of the components can be used to give further insight

into their properties.

7.6.2 Previously Resolved Systems with no Dynamical Masses

Seven of the 19 systems resolved in this program had been previously resolved through

other means, and yet still lack dynamical masses. They are: LHS 1630AB, GJ 2069AED,

GJ 2069BC, LHS 6167AB, WT 1827AB, GJ 831AB and LHS 4009AB. The other targets

have orbits that are in diverse states of completion, depending on the orbital period. We

will investigate the extent to which it may be possible to estimate orbital parameters for

orbits that seem nearly complete; however, experience dictates that such estimates must be
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done with extreme caution. We also expect that several of these orbits will have complete

coverage in the next few years. The majority of systems in this category were resolved

previously using HST/FGS (e.g., Henry et al. 1999), which provides differential photometry

in a bandpass that closely approximates the V band. Even if masses cannot yet be derived,

combining the resolved JHKs photometry and resolved V band photometry from HST/FGS

greatly enhances the potential for photometric characterization of the companions. It is now

possible to fit them into our newly derived color-magnitude relations (§6.4, Table 6.5) and

to compare the companions to spectroscopically characterized objects that are good color

matches.

7.6.3 Systems with Previously Known Dynamical Masses

Seven of the systems resolved in this study are systems for which dynamical masses already

exist or have been published by others during the course of the study. These systems are: GJ

2005ABC, GJ 234AB, LHS 2397aAB, GJ 473AB, GJ 1005AB, GJ 65AB, and GJ 866ABC.

Systems with well constrained masses, such as GJ 234AB, will serve as important checks on

our methodology. It is also possible that for some systems our results will further reduce the

errors associated with the mass measurements. Because dynamical masses for VLM stars

and brown dwarfs can only be established for very closely separated systems, we often know

very little about the atmospheric properties of the objects we use as benchmarks in the MLR.

Indeed, the current MLRs are best described as Mass-Absolute Magnitude relations in the

sense that they use a single photometric band as a proxy for luminosity (Henry & McCarthy

1993; Henry et al. 1999; Delfosse et al. 2000). As is the case with the systems described in
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§7.6.2 above, knowledge of resolved JHKs photometry will now allow us to better understand

these important benchmarks and move in the direction of a true MLR where the benchmark

objects are fully characterized.



194

CHAPTER 8

Conclusions

The work presented in this dissertation has connections to several topics in low mass star and

brown dwarf research. In this concluding chapter, we review the highlights of the work. More

importantly, we ask the question:“How has the work presented here advanced the science of

astronomy?” The answer to this broad question can be used as the metric of the merit of

any scientific work. This is especially true for the large and detailed projects that so often

form the bulk of graduate dissertation work.

8.1 Stellar/Substellar Multiplicity

After a brief outline of the background knowledge that is most important for motivating

this dissertation, we addressed the topic of M dwarf multiplicity, with an emphasis on stel-

lar/substellar multiplicity, in Chapters 3 and 4. The conclusions from this study, in the form

of multiplicity fractions for different scenarios, are listed in Table 4.2. By comparing our

results to that of several other studies, we discuss “a current map of the brown dwarf desert”

in §4.4. Our principal conclusion is that the scarcity of substellar companions orbiting stars

seems to be a universal property of stellar populations. From the other studies we site in

§4.4 we see that the brown dwarf desert exists regardless of the separations and ages of the

systems in questions, and that the desert also prevails for a wide range of masses, but with

the more massive component always significantly more massive than the secondary (primary

of spectral types K or earlier). The work presented here finished the portrait of the brown

dwarf desert by probing mass ratios approaching unity, where the stellar companion may be



195

only slightly more massive than the substellar companion. We find essentially the same result

as the previous searches with more massive primaries, which state that the stellar/substellar

multiplicity fraction is best characterized as being on the order of a few percent (Table 4.2).

This finding excludes the possibility that mass ratio is the primary factor controlling the

formation of stellar/substellar binaries, and points to the nature of the secondary compan-

ion as playing the primary role. In other words, we can now say with good confidence that

regardless of the properties of the primary star, Nature dislikes brown dwarfs as companions

to stars. The causes for this selection effect in the binary formation process are not clear.

We discuss the implications of our findings in light of the leading stellar and brown dwarf

formation theoretical scenarios in §4.6.2. Any theoretical prediction of the results of the

stellar formation process must now replicate the multiplicity fractions stated in Table 4.2

and the general idea of a mostly invariant brown dwarf desert, if it is to be deemed valid.

Looking toward the future of this line of research, we note that the overall results in Table

4.2 are statistically robust, with uncertainties of only a few percent, and that given the size

of our survey and those discussed in §4.4, little statistical robustness can be gained unless

very large surveys for close substellar companions, on the order of thousands of targets, are

implemented. Even then the value of such surveys may have more to do with the charac-

teristics of individual objects and the presence of individual companions than in improving

population properties. What could be improved is the connection between binary properties

and precise masses at the extreme low mass end of the stellar main sequence. In Figure 4.5

and §4.6 we note that there is currently a gap in the companion mass coverage between 0.2
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and 0.1 M⊙. This mass range is important because it is where the onset of nearly equal

mass multiplicity appears to take place. Making more dynamical masses available in that

mass range will also improve the overall robustness of the MLR, which will improve our

understanding of multiple systems as well as isolated objects (Chapter 7).

8.2 The HR Diagram at the End of the Stellar Main Sequence

In what is perhaps the most important aspect of this dissertation, we have conducted a pho-

tometric and astrometric survey of 63 objects thought to lie close to the stellar/substellar

boundary, ranging in spectral types from M6V to L4. The methodology of this survey is

discussed in Chapter 5 and its results are discussed in Chapter 6. The main result of this

survey is the creation of the first HR diagram for these spectral types that is based on very

broad photometric SED coverage (∼97%), precise trigonometric distance measurements, and

the latest model atmospheres for Teff determination. The HR diagram is shown in Figure

6.3 and discussed in §6.3. By examining luminosity-radius (Figure 6.12) and temperature-

radius (Figure 6.15) trends, we identify what is likely the minimum radius star at the end

of the stellar main sequence and the subsequent jump to larger radii at cooler tempera-

tures for brown dwarfs. We compare our findings to the predictions of several theoretical

evolutionary models (§6.7.3) and find that none of the models adequately fit the data, but

that the discrepancy is in the direction that is expected, given the recent revision of the

solar metallicity values used to calibrate the models. We have checked our radii predictions

against radii directly measured with long baseline optical interferometry and have achieved



197

good results for hotter stars (Figure 5.4). It is currently not possible to check our technique

directly against measured radii for late M and L dwarfs. However, we are confident that

the BT-Settl model atmospheres we are using work well in the late M and L temperature

range because the uncertainties we obtain in the temperature derivations are no larger than

the ones obtained for hotter objects. Should these results hold up to further scrutiny, this

would be a significant discovery in the sense that it answers fundamental questions about

the nature of the stellar population of the Galaxy, and what objects are or are not stars

in the VLM domain. This research also highlighted the importance of optical photometry

when studying cool stars and brown dwarfs.

There are still 19 objects in this project that do not have finished trigonometric parallaxes.

We will include them in our HR diagram and publish them in a future publication. In the

future, we must look for ways to test the results and the atmospheric models used to derive

the effective temperatures, which are then used to derive radii. Direct comparison of model

spectra to observed spectra in this temperature range is one way in which the models could

be tested, thus accessing the validity of our results.

8.3 New Astrometric Binaries

The effort to obtain dynamical masses for VLM stars and brown dwarfs is necessarily a long

term effort due to the orbital periods of the binary systems suitable for dynamical mass

determination. Binaries for which the components can be resolved using high resolution

imaging tend to have periods of several years in the VLM regime. In Chapter 7, we described
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observations done as part of a pilot project to resolve several binaries for which we noticed

astrometric perturbations in the trigonometric parallax solutions. By resolving five binary

systems for the first time, we have confirmed their multiplicity, determined their separations

as well as their flux ratios, all of which are necessary for dynamical mass determinations.

Mass is the most fundamental property of any astronomical object, and the dynamical

masses we will obtain as a result of this long term project will allow for a thorough comparison

of stellar properties to model predictions. As a result of this project we will be able to

populate the HR diagram of Figure 6.3 with benchmark binaries, refine the MLR, constrain

rates of substellar cooling, and provide the data needed to finally understand the physics of

these low mass objects in detail.

8.4 Final Thoughts

I have spent the last eight years of my life learning and teaching astronomy, and in particular,

absorbing and producing knowledge about our faintest Galactic neighbors and their funda-

mental properties. Only time will tell if the specific results presented in this dissertation are

or are not a significant contribution to human knowledge. Regardless of specific results, I

will be satisfied if looking back at this work I can say that it has broadened our perception

of the Universe in a small way, and helped shift our vision from one that is Earth-centered

to one that provides a broader understanding of our place in the Galaxy. As I look back, in

the future, I hope to remember what exciting times these were for astronomy and physics.

During the course of my graduate studies NASA’s Kepler mission discovered hundred of
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extrasolar planets, the Hubble Space Telescope was saved by a daring servicing mission,

an SUV-sized rover landed on Mars, we were treated to a transit of Venus, a Nobel Prize

was awarded for the discovery of the acceleration of the expansion of the Universe, and the

existence of the Higgs Boson was confirmed at the Large Hadron Collider at CERN.

As I write this, the United States is slowly emerging from the Great Recession that

started in 2008, and science spending is being cut in all areas. And yet, there is so much

potential for discovery that did not exist even a decade ago. As astronomy reaches for the

depths of the cosmos with projects such as the Dark Energy Survey and approaches the point

where we can seriously consider the possibility of life in other planets, many of which may

soon be imaged in detail, it is easy to see that we are on the verge of a potential revolution

is astronomy the likes of which have not been seen before. I hope whoever reads this will

be able to say that the People realized that they had too much to lose by not investing in

science and chose to fund its true potential. As for me, I am grateful to have been a part of

this exciting time, in no matter how small a manner.
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APPENDIX

APPENDIX − IDL Codes for Determining Effective Temperature and SED
Fits

This appendix contains all code used to determine the effective temperature, luminosity,

and radius of objects based on the BT-Settl models. The motivation and physics behind

the procedures is explained in §§5.5 and 5.6. The codes are transcribed here “as used”, and

several of them could be improved. The explanations accompanying every code are meant

in part to provide a step by step description of the pipeline.

All codes were run using IDL version 7.0.

A Formatting Input Spectral Templates

The BT-Settl synthetic spectra are provided in a wavelength scale that varies according to

the region of the spectrum and increments are generally smaller than 1 Å. This precision is

not needed for calculating photometric magnitudes. Computations are greatly simplified if

the spectra are smoothed using a 1Å scale, so that integrating over wavelength can be done

by counting array elements. This simplification avoids the use of “for” loops, and makes the

code ran considerably faster.

The following code takes a list of file names containing BT-Settl spectra and outputs the

spectra in those files using a 1Å scale running from 4,000Å to 30µm. This is the wavelength

range that will be used for all calculations.

pro formatspectra,infile

readcol,infile,filenames,format=’a’
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size=n_elements(filenames)

intwave =lindgen(296000)+4000

for i=0,size-1 do begin

print,""

print, "Working on ",filenames[i]

readcol,filenames[i],wave,logflux,format="d,d"

flux=10.^logflux

intflux = interpol(flux,wave,intwave)

smoothintflux = smooth(intflux,20)

openw,unit,’int’+filenames[i],/get_lun

for j=0L,295999 do printf,unit,intwave[j],smoothintflux[j]

free_lun, unit

endfor

end
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B Obtaining Colors From Synthetic Spectra

Once spectra are formatted, it is necessary to obtain the synthetic colors for all combinations

of bands V , R, I, J , H , Ks, W1, W2, and W3 for each synthetic spectrum. This is done

using the tabulated photometric zero points for each band and the filter response function

for each band. The input is a one column text file with a list of file names for the synthetic

spectra. The output is one text file consisting of a large table. The first column of the output

is the file name, and the others are the 36 possible colors.

pro synthcolors,infile

colorset

readcol,infile,filenames,format="a"

howmanyfiles = n_elements(filenames)

readcol,"V_curve.txt",vwave,vtrans,format="L,d", /silent

readcol,"R_curve.txt",rwave,rtrans,format="L,d", /silent

readcol,"I_curve.txt",iwave,itrans,format="L,d", /silent

readcol,"J_RSR_curve.txt",jwave,jtrans,format="L,d", /silent

readcol,"H_RSR_curve.txt",hwave,htrans,format="L,d", /silent

readcol,"Ks_RSR_curve.txt",kswave,kstrans,format="L,d", /silent

readcol,"intw1curve.txt",w1wave,w1trans,format="L,d", /silent

readcol,"intw2curve.txt",w2wave,w2trans,format="L,d", /silent

readcol,"w3curve.txt",w3wave,w3trans,format="L,d", /silent

readcol,"w4curve.txt",w4wave,w4trans,format="L,d",/silent

;; The effective wavelengths for the bands are:

veffwave = 5455. ;Angstroms, Bessel and Murphy 2012 PASP 124,140, table 3

reffwave = 6426.

ieffwave = 7939.

jeffwave = 1.235e4 ;Angstroms, Cohen et al. 2003 AJ 126,1096, table 2

heffwave = 1.662e4

kseffwave = 2.159e4

w1effwave = 3.353e4 ;Angstroms, Jarrett et al 2011, ApJ 735,112, table 4

w2effwave = 4.603e4

w25effwave = 8.05e4 ; mean of w2 and w3. covers gap for polynomial
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w3effwave = 1.156e5

w34effwave = 1.682e5

w4effwave = 2.208e5

wave = lindgen(296000)+4000+5

sizelongwave=n_elements(wave)

longflux = fltarr(sizelongwave)

longvtrans = fltarr(sizelongwave)

longrtrans = fltarr(sizelongwave)

longitrans = fltarr(sizelongwave)

longjtrans = fltarr(sizelongwave)

longhtrans = fltarr(sizelongwave)

longkstrans = fltarr(sizelongwave)

longw1trans = fltarr(sizelongwave)

longw2trans = fltarr(sizelongwave)

longw3trans = fltarr(sizelongwave)

longw4trans = fltarr(sizelongwave)

minvwave=min(vwave)

minrwave=min(rwave)

miniwave=min(iwave)

minjwave=min(jwave)

minhwave=min(hwave)

minkswave=min(kswave)

minw1wave=min(w1wave)

minw2wave=min(w2wave)

minw3wave=min(w3wave)

minw4wave=min(w4wave)

sizevwave=n_elements(vwave)

sizerwave=n_elements(rwave)

sizeiwave=n_elements(iwave)

sizejwave=n_elements(jwave)

sizehwave=n_elements(hwave)

sizekswave=n_elements(kswave)

sizew1wave=n_elements(w1wave)

sizew2wave=n_elements(w2wave)

sizew3wave=n_elements(w3wave)

sizew4wave=n_elements(w4wave)
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for i=0L, sizelongwave-1 do begin ; this loop will create the long

; band arrays

if wave[i] eq minvwave then begin

for j=0L,sizevwave-1 do longvtrans[i+j] =vtrans[j]

endif

if wave[i] eq minrwave then begin

for j=0L,sizerwave-1 do longrtrans[i+j] =rtrans[j]

endif

if wave[i] eq miniwave then begin

for j=0L,sizeiwave-1 do longitrans[i+j] =itrans[j]

endif

if wave[i] eq minjwave then begin

for j=0L,sizejwave-1 do longjtrans[i+j] =jtrans[j]

endif

if wave[i] eq minhwave then begin

for j=0L,sizehwave-1 do longhtrans[i+j] =htrans[j]

endif

if wave[i] eq minkswave then begin

for j=0L,sizekswave-1 do longkstrans[i+j] =kstrans[j]

endif

if wave[i] eq minw1wave then begin

for j=0L,sizew1wave-1 do longw1trans[i+j] =w1trans[j]

endif

if wave[i] eq minw2wave then begin

for j=0L,sizew2wave-1 do longw2trans[i+j] =w2trans[j]

endif

if wave[i] eq minw3wave then begin

for j=0L,sizew3wave-1 do longw3trans[i+j] =w3trans[j]

endif

if wave[i] eq minw4wave then begin

for j=0L,sizew4wave-1 do longw4trans[i+j] =w4trans[j]

endif

endfor

openw,unit,"colors.jao.out.2",/get_lun, width=500

for a=0, howmanyfiles-1 do begin

c = double(2.998e10) ; speed of light in cm/s

h = double(6.626e-27) ; planck’s constant in erg*sec
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;; The photometric zero points for VRI are calculated

;; based on Bessel and Murphy 2012 (PASP 124,140)

;; starting from equations A2 and A4, plug in zero points

;; and effective wavelengths from Table 3 to calculate

;; zero points in units of photons/s/cm2.

zpv = double(1.01464e11) ;photons/s/cm2

zpr = double(7.15579e10) ;photons/s/cm2

zpi = double(4.71718e10) ;photons/s/cm2

;; While Bessel reports zero points in terms of offsets,

;; 2MASS (Cohen et al 2003, AJ 126,1096, table 2) and

;; WISE (Jarrett et al 2011, ApJ 735,112, table 4)

;; report them in terms of an isophot flux in energy units

;; which must then be convolved with the RSRs to get the total

;; zero point flux. This only needs to be done once, and was done

;; by the lines that are commented out below.

;; The tabulated isophotal fluxes in W/cm2/micron are:

;; J H Ks W1 W2 W3

;; 3.129e-13 1.133e-13 4.283e-14 8.179e-15 2.415e-15 6.515e-17

;; to go from W/cm2/micron to erg/s/cm2/Ang multiply by 10^(7-4)=10^3

zpjiso = 3.129e-13 *10.^3.

zphiso = 1.133e-13 *10.^3.

zpksiso = 4.283e-14 *10.^3.

zpw1iso = 8.179e-15 *10.^3.

zpw2iso = 2.415e-15 *10.^3.

zpw3iso = 6.515e-17 *10.^3.

zpw4iso = 5.090e-18 *10.^3.

zpj = total((zpjiso/(h*c))*(longjtrans *wave)) / (total(longjtrans))

zph = total((zphiso/(h*c))*(longhtrans *wave)) / (total(longhtrans))

zpks = total((zpksiso/(h*c))*(longkstrans *wave)) / (total(longkstrans))

zpw1 = total((zpw1iso/(h*c))*(longw1trans *wave)) / (total(longw1trans))

zpw2 = total((zpw2iso/(h*c))*(longw2trans *wave)) / (total(longw2trans))

zpw3 = total((zpw3iso/(h*c))*(longw3trans *wave)) / (total(longw3trans))

; openr,specfile,filenames[a],/get_lun

; flux =0d

; while not eof(specfile) do begin
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; readf,specfile, x,y

; flux=[flux,y]

; endwhile

readcol,filenames[a],flux,format="x,d"

; help,flux

;; Step 5 - Change spectrum to units of photon/s/cm2/A.

;; This minimizes the color terms when comparing it to

;; the zero point (vega).

fluxinphotons = double(flux *(wave/(h*c)))

help,fluxinphotons

print, total(fluxinphotons)

; plot,wave,flux,xrange=[6000,50000]

newvflux = (total((longvtrans*fluxinphotons)) / (total(longvtrans)))

print, total(longvtrans*fluxinphotons)

help,newvflux

newrflux = total((longrtrans*fluxinphotons)) / (total(longrtrans))

help,newrflux

newiflux = total((longitrans*fluxinphotons)) / (total(longitrans))

help,newiflux

newjflux = total((longjtrans*fluxinphotons)) / (total(longjtrans))

newhflux = total((longhtrans*fluxinphotons)) / (total(longhtrans))

newksflux = total((longkstrans*fluxinphotons)) / (total(longkstrans))

neww1flux = total((longw1trans*fluxinphotons)) / (total(longw1trans))

neww2flux = total((longw2trans*fluxinphotons)) / (total(longw2trans))

neww3flux = total((longw3trans*fluxinphotons)) / (total(longw3trans))

v = ((-2.5)*(alog10(newvflux/zpv) ))

r = ((-2.5)*(alog10(newrflux/zpr) ))

i = ((-2.5)*(alog10(newiflux/zpi) ))

j = ((-2.5)*(alog10(newjflux/zpj) ))

h = ((-2.5)*(alog10(newhflux/zph) ))

k = ((-2.5)*(alog10(newksflux/zpks)))



221

w1 = ((-2.5)*(alog10(neww1flux/zpw1)))

w2 = ((-2.5)*(alog10(neww2flux/zpw2)))

w3 = ((-2.5)*(alog10(neww3flux/zpw3)))

print,’’

print,filenames[a],v,r,i,j,h,k,w1,w2,w3

print,’’

print,filenames[a],v-r,v-i,v-j,v-h,v-k,v-w1,v-w2,v-w3,$

r-i,r-j,r-h,r-k,r-w1,r-w2,r-w3,$

i-j,i-h,i-k,i-w1,i-w2,i-w3,$

j-h,j-k,j-w1,j-w2,j-w3,$

h-k,h-w1,h-w2,h-w3,$

k-w1,k-w2,k-w3,$

w1-w2,w1-w3,$

w2-w3

printf,unit,filenames[a], v-r,v-i,v-j,v-h,v-k,v-w1,v-w2,v-w3,$

r-i,r-j,r-h,r-k,r-w1,r-w2,r-w3,$

i-j,i-h,i-k,i-w1,i-w2,i-w3,$

j-h,j-k,j-w1,j-w2,j-w3,$

h-k,h-w1,h-w2,h-w3,$

k-w1,k-w2,k-w3,$

w1-w2,w1-w3,$

w2-w3, format=’(a,36(f11.5))’

endfor

free_lun, unit

end
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C Calculating the Effective Temperature of Science Objects

Now that we know the colors for all synthetic spectra, we can match these colors to the

colors of a given science object to obtain the science object’s effective temperature. This

is done by comparing the colors of the science objects against the colors of all synthetic

spectra, one at a time, and then interpolating the comparison to the point of zero residual.

Each color is compared independently, so this code effectively provides multiple independent

determinations of the effective temperature. The mean of these values is adopted as the

effective temperature and the 1σ dispersion as the uncertainty. The code automatically

excludes colors that did not interpolate well and gives the user the option to further discard

colors that are deemed to be outliers. See §5.5 for a discussion of the methodology.

The input is the name of the object followed by its photometric magnitudes and their

uncertainties. The output is the the graphical representation seen in Figure 5.2 as well as

written output of the object’s effective temperature and error. The output file also contains

the name of the best matching spectral template, which will be used later as a starting point

to calculate the SED, and the same photometry that was used as input.

pro automatch3,outfile1,outfile2,id,spt,objname,v,verr,r,rerr,i,ierr, $

j,jerr,h,herr,k,kerr,w1,w1err,w2,w2err,w3,w3err

set_plot, ’x’

vmag = v

rmag = r

imag = i

jmag = j

hmag = h
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kmag = k

w1mag = w1

w2mag = w2

w3mag = w3

readcol,"colors.2011.out", lineid,filename,temp,$

neglogg,logm,vmr,vmi,vmj,vmh,vmk,vmw1,$

vmw2,vmw3,$

rmi,rmj,rmh,rmk,rmw1,rmw2,rmw3,$

imj,imh,imk,imw1,imw2,$

format="i,a", /silent

readcol,"colors.2011.out",imw3,jmh,jmk,jmw1,jmw2,jmw3,hmk,hmw1,hmw2,hmw3,$

kmw1,kmw2,kmw3,w1mw2,w1mw3,w2mw3,$

format="x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x", /silent

repeatstar = 0

while repeatstar eq 0 do begin

;The following variables are augmented

;throughout the program, and need to

;be undefined for every do-over.

if n_elements(foundbadindex) ne -1 then undefine,foundbadindex

if n_elements(whereselect) ne -1 then undefine,whereselect

if n_elements(goodindices) ne -1 then undefine,goodindices

if n_elements(badindices) ne -1 then undefine,badindices

if n_elements(goodintindices) ne -1 then undefine,goodintindices

if n_elements(badintindices) ne -1 then undefine,goodintindices

if n_elements(whichindex) ne -1 then undefine,whichindex

if n_elements(goodtemps) ne -1 then undefine,goodtemps

if n_elements(goodresiduals) ne -1 then undefine,goodresiduals

if n_elements(badtemps) ne -1 then undefine,badtemps

if n_elements(badresiduals) ne -1 then undefine,badresiduals

photcolors = [vmag-jmag,vmag-hmag,vmag-kmag,vmag-w1mag,vmag-w2mag, $
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vmag-w3mag, $

rmag-jmag,rmag-hmag,rmag-kmag,rmag-w1mag,rmag-w2mag,$

imag-jmag,imag-hmag,imag-kmag,imag-w1mag,imag-w2mag];, $

; jmag-hmag,jmag-kmag]

colornames = [’v-j’,’v-h’,’v-k’,’v-w1’,’v-w2’,’v-w3’, $

’r-j’,’r-h’,’r-k’,’r-w1’,’r-w2’, $

’i-j’,’i-h’,’i-k’,’i-w1’,’i-w2’ ];, $

; ’j-h’,’j-k’]

howmanyspec = n_elements(lineid)

residuals = fltarr(16,howmanyspec)

speccolor = fltarr(16,howmanyspec)

for z=0,howmanyspec-1 do begin ; this populates the model colors array

; speccolor[0,z]=vmr[z]

; speccolor[1,z]=vmi[z]

speccolor[0,z]=vmj[z]

speccolor[1,z]=vmh[z]

speccolor[2,z]=vmk[z]

speccolor[3,z]=vmw1[z]

speccolor[4,z]=vmw2[z]

speccolor[5,z]=vmw3[z]

; speccolor[8,z]=rmi[z]

speccolor[6,z]=rmj[z]

speccolor[7,z]=rmh[z]

speccolor[8,z]=rmk[z]

speccolor[9,z]=rmw1[z]

speccolor[10,z]=rmw2[z]

; speccolor[13,z]=rmw3[z]

speccolor[11,z]=imj[z]

speccolor[12,z]=imh[z]

speccolor[13,z]=imk[z]

speccolor[14,z]=imw1[z]

speccolor[15,z]=imw2[z]

; speccolor[19,z]=imw3[z]

;; speccolor[20,z]=jmh[z]

;; speccolor[21,z]=jmk[z]

;; speccolor[23,z]=jmw1[z]

;; speccolor[24,z]=jmw2[z]

;; speccolor[25,z]=jmw3[z]
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;; speccolor[26,z]=hmk[z]

;; speccolor[27,z]=hmw1[z]

;; speccolor[28,z]=hmw2[z]

;; speccolor[29,z]=hmw3[z]

;; speccolor[30,z]=kmw1[z]

;; speccolor[31,z]=kmw2[z]

;; speccolor[32,z]=kmw3[z]

;; speccolor[33,z]=w1mw2[z]

;; speccolor[34,z]=w1mw3[z]

;; speccolor[35,z]=w2mw3[z]

endfor

for i=0, 15 do begin ;loop over all colors for calculating residuals

for j=0, howmanyspec-1 do residuals[i,j] = photcolors[i] - $

speccolor[i,j]

endfor

absresiduals = abs(residuals)

meanresallcolors = fltarr(howmanyspec)

for j = 0, howmanyspec-1 do meanresallcolors[j] = mean(absresiduals[*,j])

sortbyresidual = sort(meanresallcolors)

help,sortbyresidual

;;now print the best 15 lines

print,’’

print,"The following 15 spectra have the lowest residuals."

print," LINE TEMP LOG(G) METALLICITY RESIDUAL"

for j=0,15 do print,lineid[sortbyresidual[j]],temp[sortbyresidual[j]], $

-neglogg[sortbyresidual[j]],logm[sortbyresidual[j]], $

meanresallcolors[sortbyresidual[j]]

;Now calculate residuals for each magnitude

meanvres = fltarr(howmanyspec)

meanrres = fltarr(howmanyspec)

meanires = fltarr(howmanyspec)

meanjres = fltarr(howmanyspec)

meanhres = fltarr(howmanyspec)

meankres = fltarr(howmanyspec)

meanw1res = fltarr(howmanyspec)

meanw2res = fltarr(howmanyspec)
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meanw3res = fltarr(howmanyspec)

; 0 1 2 3 4 5

; colornames = [ ’v-j’,’v-h’,’v-k’,’v-w1’,’v-w2’,’v-w3’, $

; 6 7 8 9 10

; ’r-j’,’r-h’,’r-k’,’r-w1’,’r-w2’, , $

; 11 12 13 14 15

; ’i-j’,’i-h’,’i-k’,’i-w1’,’i-w2’ $

;;;

for j=0, howmanyspec-1 do begin

meanvres[j] = mean([absresiduals[0,j],absresiduals[1,j],$

absresiduals[2,j],$

absresiduals[3,j],absresiduals[4,j],absresiduals[5,j]])

meanrres[j] = mean([absresiduals[6,j],absresiduals[7,j], $

absresiduals[8,j],$

absresiduals[9,j],absresiduals[10,j]])

meanires[j] = mean([absresiduals[11,j],absresiduals[12,j], $

absresiduals[13,j],$

absresiduals[14,j],absresiduals[15,j]])

meanjres[j] = mean([absresiduals[0,j],absresiduals[6,j], $

absresiduals[11,j]])

meanhres[j] = mean([absresiduals[1,j],absresiduals[7,j], $

absresiduals[12,j]])

meankres[j] = mean([absresiduals[2,j],absresiduals[8,j],$

absresiduals[13,j]])

meanw1res[j] = mean([absresiduals[3,j],absresiduals[9,j], $

absresiduals[14,j]])

meanw2res[j] = mean([absresiduals[4,j],absresiduals[10,j], $

absresiduals[15,j]])

meanw3res[j] = absresiduals[5,j]

endfor

print, "Mean residuals for each band"

for j=0,14 do print,lineid[sortbyresidual[j]], $

meanvres[sortbyresidual[j]],$

meanrres[sortbyresidual[j]],meanires[sortbyresidual[j]],$

meanjres[sortbyresidual[j]], $

meanhres[sortbyresidual[j]],meankres[sortbyresidual[j]], $

meanw1res[sortbyresidual[j]],meanw2res[sortbyresidual[j]], $

meanw3res[sortbyresidual[j]]
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read,"Use the residuals above to pick the best log g: ",bestlogg

read,"Use the residuals above to pick the best [M/H]: ",bestmet

read,"Enter the number for the line with overall best match: ",bestline

bestfile = ’’

bestfile = filename[where(lineid eq bestline)]

;Now let’s make another master array for the synthetic photometry, but

;only with the chosen log g and metallicity. Also make an array

;for the residuals.

selectspeccolor = fltarr(20,howmanyspec) ; all elements not matching

; log g and

; metallicity will be left

; as zero

selectresiduals = fltarr(20,howmanyspec)

selectlines = fltarr(howmanyspec)

;selectmeanres = fltarr(howmanyspec)

for j=0, howmanyspec-1 do begin

if neglogg[j] eq -bestlogg and logm[j] eq bestmet then begin

selectlines[j] = lineid[j]

for i=0, 15 do begin

selectspeccolor[i,j] =speccolor[i,j]

selectresiduals[i,j] =residuals[i,j]

endfor

; selectmeanres[j] = mean(abs(selectresiduals[*,j]))

endif

endfor

whereselect = where(selectlines ne 0.)

howmanyselect = n_elements(whereselect)

print,"Number of spectra matching criteria: ", howmanyselect

;sortedselecindices = sort(selectlines)

shortselectspeccolor = fltarr(20,howmanyselect)

shortselectresiduals = fltarr(20,howmanyselect)

shortselectlines = fltarr(howmanyselect)

shortselecttemp = fltarr(howmanyselect)



228

shortselectfiles = strarr(howmanyselect)

for j=0, howmanyselect-1 do begin

shortselectlines[j] = selectlines[whereselect[j]]

shortselecttemp[j] = temp[whereselect[j]]

shortselectfiles[j] = filename[whereselect[j]]

for i=0, 19 do begin

shortselectresiduals[i,j] = selectresiduals[i,whereselect[j]]

shortselectspeccolor[i,j] = selectspeccolor[i,whereselect[j]]

endfor

endfor

plot, shortselecttemp,shortselectresiduals[0,*], psym=3,yrange=[-3,3], $

xrange=[1400,4000],xtitle="Temperature", $

ytitle="Residuals", $

title="Effective Temperature Matches for 22 Good Colors", $

subtitle="Dots indicate model values. Diamonds indicate interpolation.",$

xstyle=1,ystyle=1

oplot,[0,4000],[0,0],linestyle=2

for i=1,15 do oplot,shortselecttemp,shortselectresiduals[i,*],$

psym=3,symsize=1.5

;Now interpolate the temp and the residuals 36 times, one for each

;color

inttemp = fltarr(16)

intresidual = fltarr(16)

for i =0, 15 do begin

inttemp[i] = interpol(shortselecttemp,shortselectspeccolor[i,*],$

photcolors[i])

intresidual[i] = interpol(shortselectresiduals[i,*], $

shortselecttemp, $

inttemp[i])

endfor

goodintindices = where(inttemp ge 1500 and inttemp le 4000 and $

abs(intresidual) $

lt .2) ;sometimes interpol produces crazy numbers if

; the colors are not monotoninc.
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badintindices = where(inttemp lt 1500 or inttemp gt 4000 or $

abs(intresidual) ge .2)

goodinttemp = fltarr(n_elements(goodintindices))

goodintresidual = fltarr(n_elements(goodintindices))

goodintcolornames = strarr(n_elements(goodintindices))

badinttemp = fltarr(n_elements(badintindices))

badintresidual = fltarr(n_elements(badintindices))

badintcolornames = strarr(n_elements(badintindices))

for i =0,n_elements(goodintindices)-1 do begin

goodinttemp[i] = inttemp[goodintindices[i]]

goodintresidual[i] = intresidual[goodintindices[i]]

goodintcolornames[i] = colornames[goodintindices[i]]

endfor

if badintindices[0] ne -1 then begin

for i=0, n_elements(badintindices)-1 do begin

badinttemp[i] = inttemp[badintindices[i]]

badintresidual[i] = intresidual[badintindices[i]]

badintcolornames[i] = colornames[badintindices[i]]

endfor

endif

if badintindices[0] ne -1 then begin

print,"The following colors had bad interpolations: ", $

colornames[badintindices]

originalcolornames = colornames

endif else print,"All 19 colors interpolated okay."

inttemp = goodinttemp ;reassigning names here makes it easier

intresidual = goodintresidual ;because the above for loop was

;written after

colornames = goodintcolornames ;the rest of the program below.

oplot,inttemp,intresidual,psym=4,symsize=1.5

if badintindices[0] ne -1 then begin

oplot,badinttemp,badintresidual,psym=4,symsize=1.5

oplot,badinttemp,badintresidual,psym=7,symsize=1.5
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endif

meantemp=mean(inttemp)

sigmatemp = stddev(inttemp)

oplot,[meantemp-sigmatemp,meantemp-sigmatemp],[-2,2],linestyle=2

oplot,[meantemp+sigmatemp,meantemp+sigmatemp],[-2,2],linestyle=2

oplot,[meantemp,meantemp],[-1.5,1.5],linestyle=2

;;print,"Color int. temp frac sigma"; uncoment this line is

;;using line 224.

fracsigma = fltarr(n_elements(colornames))

for i=0,n_elements(colornames)-1 do begin

fracsigma[i] = (inttemp[i]-meantemp)/sigmatemp

;; print,colornames[i],inttemp[i],fracsigma[i]

endfor

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Now use mouse to toss bad ones and re-compute

print,’’

print, "Preliminary Results"

print, "Effective temperature: ",meantemp

print, ’1 sigma uncertainty: ’,sigmatemp

print,’’

doagain = 1

colorselect = 0

print,"Click on any point to see color name."

print,"Click again to exclude color."

print,"Click away from any point to exit."

firstlap = 1

;badindices = 0

while doagain eq 1 do begin

closetoapoint = 0

cursor, x, y, /down

for i=0,n_elements(colornames)-1 do begin

if abs(x-inttemp[i]) lt 10. and abs(y-intresidual[i])lt 0.1 $

then closetoapoint = 1

endfor

if closetoapoint eq 0 then doagain = 0 else begin

whichtemp = abs(x - inttemp)

whichindex = where(whichtemp eq min(whichtemp))

if colorselect eq 0 then begin ;This block selects $
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a color and prints it.

print,"Selected color: ",colornames[whichindex]

print,"Selected temp.: ",inttemp[whichindex]

; print, "index: ",whichindex

colorselect = 1

selectedindex = whichindex

endif else begin ; this block deletes a selected color.

if whichindex eq selectedindex then begin

oplot, inttemp[whichindex],intresidual[whichindex], $

psym= 7,symsize=2

if (n_elements(badindices) eq 0) then badindices = $

whichindex else badindices = [badindices, whichindex]

endif; else colorselect = 0

colorselect =0

endelse

endelse

endwhile

;;badindices are bad indices of the inttemp array.

;;must now create the arrays

;;goodtemps,goodresiduals,badtemps,badresiduals

; if n_elements(badindices) eq -1 then badindices = -9

for i=0, n_elements(inttemp)-1 do begin

foundbadindex = where(i eq badindices) ;is this particular index of $

inttemp bad?

if foundbadindex[0] eq -1 then begin

if n_elements(goodtemps) eq 0 then goodtemps = inttemp[i] $

else goodtemps = [goodtemps,inttemp[i]]

if n_elements(goodresiduals) eq 0 then goodresiduals = $

intresidual[i] else goodresiduals = [goodresiduals,intresidual[i]]

endif else begin

if n_elements(badtemps) eq 0 then badtemps = inttemp[i] else $

badtemps = [badtemps,inttemp[i]]

if n_elements(badresiduals) eq 0 then badresiduals = $

intresidual[i] $

else badresiduals = [badresiduals,intresidual[i]]

endelse

endfor

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;oplot, badtemps,badresiduals,psym=7
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goodmeantemp = mean(goodtemps)

goodsigmatemp = stddev(goodtemps)

oplot,[goodmeantemp-goodsigmatemp,goodmeantemp-goodsigmatemp],[-2,2],$

linestyle=3

oplot,[goodmeantemp+goodsigmatemp,goodmeantemp+goodsigmatemp],[-2,2],$

linestyle=3

oplot,[goodmeantemp,goodmeantemp],[-1.5,1.5],linestyle=3

print,"Colors excluded: ",colornames[badindices]

print,’’

print,"FINAL RESULTS FOR ",objname

print, "Effective Temperature: ",goodmeantemp

print, ’1 sigma uncertainty: ’,goodsigmatemp

read,"Enter (0) to try again, (1) to save and move on, (2) to save but $

comment out the line, (3) to move on without saving: ",repeatstar

endwhile

if repeatstar eq 1 or repeatstar eq 2 then begin

openu,unit1,outfile1,/append,/get_lun,width=500

spc = ’ ’ ;space string variable, because idl output is stupid.

if repeatstar eq 1 then printf,unit1,id,spc,objname,spc,spt,spc, $

bestfile,spc, $

goodmeantemp,goodsigmatemp,vmag,verr,rmag,rerr,imag,ierr,jmag,jerr, $

hmag,herr, $

kmag,kerr,w1mag,w1err,w2mag,w2err,w3mag,w3err,$

format =’(a,a,a,a,a,a,a,a,20(f9.2))’

if repeatstar eq 2 then begin

comout = ’##’

comstring = ’ ’

read,"Enter a SHORT comment: ",comstring

printf,unit1,comout,spc,id,spc,objname,spc,spt,spc,bestfile,spc, $

goodmeantemp,goodsigmatemp,vmag,verr,rmag,rerr,imag,ierr,jmag,jerr, $

hmag,herr, $

kmag,kerr,w1mag,w1err,w2mag,w2err,w3mag,w3err, $

spc,comstring, format =’(a,a,a,a,a,a,a,a,a,a,20(f9.2),a,a)’

endif

;Now compute/collect the sigmas for

;all 36 colors and print them to a

;separate file.
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; help,inttemp

intindex = 0

; help,goodintindices

; print, goodintindices

tempsigmas = fltarr(16)

for i =0, 15 do begin

interpolgood = where(i eq goodintindices)

if interpolgood ne -1 then begin

tempsigmas[i] = (inttemp[intindex] - goodmeantemp) /goodsigmatemp

intindex ++

endif else tempsigmas[i] = -99

; print, tempsigmas[i]

endfor

openu,unit2,outfile2,/append,/get_lun,width=1000

if repeatstar eq 1 then printf,unit2,id,spc,objname,spc,spt, $

goodmeantemp,$

goodsigmatemp,tempsigmas

if repeatstar eq 2 then printf,unit2,comout,spc,id,spc,objname,spc, $

spt, $

goodmeantemp,goodsigmatemp,tempsigmas

free_lun,unit1

free_lun,unit2

;; Now re-construct and save the final plot

set_plot,’ps’

device, filename=objname+".plot2.ps", /landscape

plot, shortselecttemp,shortselectresiduals[0,*], psym=3,yrange=[-3,3], $

xrange=[1400,4000],xtitle="Temperature", $

ytitle="Residuals",title=objname+" -- Effective Temperature Matches for $

20 Good Colors", $

subtitle="Dots indicate model values. Diamonds indicate interpolation.",$

xstyle=1,ystyle=1, $

charthick=2, thick=2, xthick=2, ythick=2

oplot,[0,4000],[0,0],linestyle=2,thick=2

for i=1,15 do oplot,shortselecttemp,shortselectresiduals[i,*],psym=3, $

symsize=1.2,thick=2

oplot,inttemp,intresidual,psym=4,symsize=1.2,thick=2
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if badintindices[0] ne -1 then begin

oplot,badinttemp,badintresidual,psym=4,symsize=1.2,thick=2

oplot,badinttemp,badintresidual,psym=7,symsize=1.2,thick=2

endif

oplot,[meantemp-sigmatemp,meantemp-sigmatemp],[-2,2],linestyle=2,thick=2

oplot,[meantemp+sigmatemp,meantemp+sigmatemp],[-2,2],linestyle=2,thick=2

oplot,[meantemp,meantemp],[-1.5,1.5],linestyle=2,thick=2

if badindices[0] ne -1 then oplot, inttemp[badindices], $

intresidual[badindices],psym= 7,symsize=1.2,thick=2

oplot,[goodmeantemp-goodsigmatemp,goodmeantemp-goodsigmatemp],[-2,2],$

linestyle=3,thick=2

oplot,[goodmeantemp+goodsigmatemp,goodmeantemp+goodsigmatemp],[-2,2],$

linestyle=3,thick=2

oplot,[goodmeantemp,goodmeantemp],[-1.5,1.5],linestyle=3,thick=2

xyouts, 1500,2.6, ’Best Temperature (K): ’

xyouts, 1500,2.4, ’1 Sigma Error (K): ’

if badintindices[0] ne -1 then xyouts, 1500,-2.3,’Bad Interpolations: ’ $

else xyouts, 1500,-2.3, ’All colors interpolated okay.’

if badindices[0] ne -1 then xyouts, 1500,-2.5,’Bad Fits: ’ $

else xyouts, 1500,-2.5, ’All colors had good fits.’

xyouts, 2000,2.6, goodmeantemp

xyouts, 2000,2.4, goodsigmatemp

if badintindices[0] ne -1 then begin

for i=0, n_elements(badintindices)-1 do xyouts, (2000 + (i*150)), $

-2.3, originalcolornames[badintindices[i]]

endif

if badindices[0] ne -1 then begin

for i=0, n_elements(badindices)-1 do xyouts, (1750 + (i*150)), $

-2.5, colornames[badindices[i]]

endif

if repeatstar eq 2 then xyouts, 2500, 2.5, "WARNING: This result was $

commented out."

device, /close

endif

end
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The previous code required the parameters for each objects to be entered in the code

call line, which is burdensome given the fact that each object has nine magnitudes and nine

errors to be entered. The next code executes the previous code for each line in a file so

that the input can be tabulated. After each object is calculated, the code gives the user the

option of stopping or moving on to the next object.

pro automatch,infile,outfile1,outfile2

readcol,infile,id,spt,name,vmag,verr,rmag,rerr,imag,ierr,jmag,jerr,$

hmag,herr,kmag,kerr,w1mag,w1err,w2mag,w2err,w3mag,w3err, $

format="i,a,a,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f,f"

howmanystars = n_elements(name)

colorset

plot,[100,200],[100,200],xrange=[0,10],yrange=[0,10]

anykey = ’’

read,’Use the mouse to re-size the graph window to facilitate viewing. $

Press ENTER when done.’,anykey

print,’’

Read,"Start on line: ",startline

startindex = where(id eq startline)

for i = startindex[0], howmanystars-1 do begin

print,’’

print, ’Now working on star ’,id[i],’, ’,name[i]

if vmag[i] eq 0 then begin

Read,’Enter an estimate for V: ’,vmag[i]

verr[i] = 0.2

endif

automatch3,outfile1,outfile2,id[i],spt[i],name[i],vmag[i],verr[i],rmag[i] $

,rerr[i],imag[i],ierr[i],jmag[i],jerr[i],hmag[i],herr[i], $

kmag[i],kerr[i],w1mag[i],w1err[i],w2mag[i],w2err[i],w3mag[i],$

w3err[i]

endfor

print,’’

print, ’END’

end
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D Calculating Luminosity and Radius

In the previous section, code “automatch3.pro” selected which of the BT-Settl synthetic

spectra was an overall best match to the colors of each science target. We will now tweak

that template based on the differences between the observed photometry and photometry

from the synthetic template so as to produce a template that more closely matches the true

SED of the science object. The reasoning behind the procedure is described in §5.6. The

input for this procedure is the output from the previous procedure, with added columns for

trigonometric parallax and its error. The output is a text line containing the luminosity and

radius in several units, and the associated errors. This procedure produces Figure 5.3.

pro calsed8,objid,objname,spt,template,prlx,perr,pcode,teff,tefferr,$

vmag,vmagerr,rmag,rmagerr,imag,imagerr,$

jmag,jmagerr,hmag,hmagerr,ksmag,ksmagerr,w1mag,w1magerr,$

w2mag,w2magerr,w3mag,w3magerr,outfile,$

vwave,vtrans,rwave,rtrans,iwave,itrans,jwave,jtrans,hwave, $

htrans,kswave,kstrans,w1wave,w1trans,$

w2wave,w2trans,w3wave,w3trans

set_plot,’ps’

device,filename=objname+’.calsed.pub.8order.ps’

;openu,outunit,outfile,/get_lun,/append

print,"Now working on ",objname,", spectral type ",spt

print, "Now reading SED template."

readcol,template,wave,flux,format="L,d",/silent

;;The Allard model spectra are calculated as flux at the stellar

;;surface, which is a very high number. This code was originally

;; designed to work with observed templates, i.e., units of

;; flux at the telescope. This gives the calibration routine a hard

;; time. To correct for this, lets convert the total

;; flux to a typical observed bolometric flux of
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;; ~ 10^-10 erg/s/cm^2

modeltotal = double(total(flux))

flux = flux * (double(1e-10)/modeltotal)

;;;;; change the factor in the next line if the coeficients for the

;;;;; first polynomial fit are too big.

flux = flux * 30d

;; Step 3 - modify RSRs array to match dimensions of flux template.

;; This makes all arrays run out to 30 microns (300,000 A)

;; The effective wavelengths for the bands are:

veffwave = 5455. ;Angstroms, Bessel and Murphy 2012 PASP 124,140, table 3

reffwave = 6426.

ieffwave = 7939.

jeffwave = 1.235e4 ;Angstroms, Cohen et al. 2003 AJ 126,1096, table 2

heffwave = 1.662e4

kseffwave = 2.159e4

w1effwave = 3.353e4 ;Angstroms, Jarrett et al 2011, ApJ 735,112, table 4

w2effwave = 4.603e4

w25effwave = 8.05e4 ; mean of w2 and w3. covers gap for polynomial

w3effwave = 1.156e5

longwave = wave

longflux = flux

minwave = min(wave)

;;; longwave = findgen(300000 - minwave+1)+minwave

sizelongwave=n_elements(longwave)

;;; longflux = fltarr(sizelongwave)

longvtrans = fltarr(sizelongwave)

longrtrans = fltarr(sizelongwave)

longitrans = fltarr(sizelongwave)

longjtrans = fltarr(sizelongwave)

longhtrans = fltarr(sizelongwave)

longkstrans = fltarr(sizelongwave)

longw1trans = fltarr(sizelongwave)

longw2trans = fltarr(sizelongwave)

longw3trans = fltarr(sizelongwave)
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minvwave=min(vwave)

minrwave=min(rwave)

miniwave=min(iwave)

minjwave=min(jwave)

minhwave=min(hwave)

minkswave=min(kswave)

minw1wave=min(w1wave)

minw2wave=min(w2wave)

minw3wave=min(w3wave)

sizevwave=n_elements(vwave)

sizerwave=n_elements(rwave)

sizeiwave=n_elements(iwave)

sizejwave=n_elements(jwave)

sizehwave=n_elements(hwave)

sizekswave=n_elements(kswave)

sizew1wave=n_elements(w1wave)

sizew2wave=n_elements(w2wave)

sizew3wave=n_elements(w3wave)

sizeflux = n_elements(flux)

;;; for i=0L, sizeflux-1 do longflux[i] = flux[i] ; creates long

; template array

for i=0L, sizelongwave-1 do begin ; this loop will create the

; long band arrays

if longwave[i] eq minvwave then begin

for j=0L,sizevwave-1 do longvtrans[i+j] =vtrans[j]

endif

if longwave[i] eq minrwave then begin

for j=0L,sizerwave-1 do longrtrans[i+j] =rtrans[j]

endif

if longwave[i] eq miniwave then begin

for j=0L,sizeiwave-1 do longitrans[i+j] =itrans[j]

endif

if longwave[i] eq minjwave then begin

for j=0L,sizejwave-1 do longjtrans[i+j] =jtrans[j]

endif

if longwave[i] eq minhwave then begin

for j=0L,sizehwave-1 do longhtrans[i+j] =htrans[j]
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endif

if longwave[i] eq minkswave then begin

for j=0L,sizekswave-1 do longkstrans[i+j] =kstrans[j]

endif

if longwave[i] eq minw1wave then begin

for j=0L,sizew1wave-1 do longw1trans[i+j] =w1trans[j]

endif

if longwave[i] eq minw2wave then begin

for j=0L,sizew2wave-1 do longw2trans[i+j] =w2trans[j]

endif

if longwave[i] eq minw3wave then begin

for j=0L,sizew3wave-1 do longw3trans[i+j] =w3trans[j]

endif

endfor

;; Step 5 - Change spectrum to units of photon/s/cm2/A.

;; This minimizes the color terms when comparing it to

;; the zero point (vega).

c = double(2.998e10) ; speed of light in cm/s

h = double(6.626e-27) ; planck’s constant in erg*sec

fluxinphotons = longflux *(longwave/(h*c))

;plot, longwave,fluxinphotons, /xlog

;; The photometric zero points for VRI are calculated

;; based on Bessel and Murphy 2012 (PASP 124,140)

;; starting from equations A2 and A4, plug in zero points

;; and effective wavelengths from Table 3 to calculate

;; zero points in units of photons/s/cm2.

zpv = double(1.01464e11) ;photons/s/cm2

zpr = double(7.15579e10) ;photons/s/cm2

zpi = double(4.71718e10) ;photons/s/cm2

;; While Bessel reports zero points in terms of offsets,

;; 2MASS (Cohen et al 2003, AJ 126,1096, table 2) and

;; WISE (Jarrett et al 2011, ApJ 735,112, table 4)

;; report them in terms of an isophot flux in energy units

;; which must then be convolved with the RSRs to get the total

;; zero point flux. This only needs to be done once, and was done

;; by the lines that are commented out below.
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;; The tabulated isophotal fluxes in W/cm2/micron are:

;; J H Ks W1 W2 W3

;; 3.129e-13 1.133e-13 4.283e-14 8.179e-15 2.415e-15 6.515e-17

;; to go from W/cm2/micron to erg/s/cm2/Ang multiply by 10^(7-4)=10^3

zpjiso = 3.129e-13 *10.^3.

zphiso = 1.133e-13 *10.^3.

zpksiso = 4.283e-14 *10.^3.

zpw1iso = 8.179e-15 *10.^3.

zpw2iso = 2.415e-15 *10.^3.

zpw3iso = 6.515e-17 *10.^3.

zpj = total((zpjiso/(h*c))*(longjtrans *longwave)) / (total(longjtrans))

zph = total((zphiso/(h*c))*(longhtrans *longwave)) / (total(longhtrans))

zpks = total((zpksiso/(h*c))*(longkstrans *longwave)) / (total(longkstrans))

zpw1 = total((zpw1iso/(h*c))*(longw1trans *longwave)) / (total(longw1trans))

zpw2 = total((zpw2iso/(h*c))*(longw2trans *longwave)) / (total(longw2trans))

zpw3 = total((zpw3iso/(h*c))*(longw3trans *longwave)) / (total(longw3trans))

;print, "Zero points in photons for 2mass and wise: ",zpj,zph,zpks,zpw1,$

zpw2,zpw3

;; Step 6 - While loop

residuals = ’bad’

newvmag = 0.

newrmag = 0.

newimag = 0.

newjmag = 0.

newhmag = 0.

newksmag = 0.

neww1mag = 0.

neww2mag = 0.

neww3mag = 0.

anykey = ’ ’
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itcounter = 0.

;; Read, "Enter maximum error for convergence: ",maxerr

maxerr = 0.03

;;set_plot, ’ps’

;; filenamestring = ’ ’

;; read, "File name for plots: ",filenamestring

;;device, filename=objname+"calsed.plot.ps", /landscape

print,’ ’

;;printf,1,’ ’

print,objname

;;printf,1,objname

firstiter = 1 ;for first iteration, stores original magnitudes

while residuals eq ’bad’ do begin

;customize next line(s) to change error tolerance

If abs(newvmag - vmag) gt maxerr or abs(newrmag - rmag) gt maxerr or $

abs(newimag - imag) gt maxerr or abs(newjmag - jmag) gt maxerr or $

abs(newhmag - hmag) gt maxerr or abs(newksmag - ksmag) gt maxerr or $

abs(neww1mag - w1mag) gt maxerr or abs(neww2mag - w2mag) gt $

maxerr or $

abs(neww3mag - w3mag) gt maxerr then begin

newvflux = total((longvtrans*fluxinphotons)) / (total(longvtrans))

newrflux = total((longrtrans*fluxinphotons)) / (total(longrtrans))

newiflux = total((longitrans*fluxinphotons)) / (total(longitrans))

newjflux = total((longjtrans*fluxinphotons)) / (total(longjtrans))

newhflux = total((longhtrans*fluxinphotons)) / (total(longhtrans))

newksflux = total((longkstrans*fluxinphotons)) / (total(longkstrans))

neww1flux = total((longw1trans*fluxinphotons)) / (total(longw1trans))

neww2flux = total((longw2trans*fluxinphotons)) / (total(longw2trans))

neww3flux = total((longw3trans*fluxinphotons)) / (total(longw3trans))

newvmag = ((-2.5)*(alog10(newvflux/zpv) ))

newrmag = ((-2.5)*(alog10(newrflux/zpr) ))

newimag = ((-2.5)*(alog10(newiflux/zpi) ))

newjmag = ((-2.5)*(alog10(newjflux/zpj) ))

newhmag = ((-2.5)*(alog10(newhflux/zph) ))

newksmag = ((-2.5)*(alog10(newksflux/zpks)))
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neww1mag = ((-2.5)*(alog10(neww1flux/zpw1)))

neww2mag = ((-2.5)*(alog10(neww2flux/zpw2)))

neww3mag = ((-2.5)*(alog10(neww3flux/zpw3)))

if firstiter eq 1 then begin

origvmag = newvmag

origrmag = newrmag

origimag = newimag

origjmag = newjmag

orighmag = newhmag

origksmag = newksmag

origw1mag = neww1mag

origw2mag = neww2mag

origw3mag = neww3mag

endif

firstiter = 0

; print, "the new magnitudes are ",newvmag,newrmag,newimag,newjmag,$

newhmag, $

newksmag,neww1mag,neww2mag,neww3mag,neww4mag

; anykey = ’ ’

; read,"Press any key to continue: ",anykey

vfluxfac = 10.^(-(vmag-newvmag)/2.5)

rfluxfac = 10.^(-(rmag-newrmag)/2.5)

ifluxfac = 10.^(-(imag-newimag)/2.5)

jfluxfac = 10.^(-(jmag-newjmag)/2.5)

hfluxfac = 10.^(-(hmag-newhmag)/2.5)

ksfluxfac = 10.^(-(ksmag-newksmag)/2.5)

w1fluxfac = 10.^(-(w1mag-neww1mag)/2.5)

w2fluxfac = 10.^(-(w2mag-neww2mag)/2.5)

w3fluxfac = 10.^(-(w3mag-neww3mag)/2.5)

cumvfluxfac = 10.^(-(newvmag-origvmag)/2.5)

cumrfluxfac = 10.^(-(newrmag-origrmag)/2.5)

cumifluxfac = 10.^(-(newimag-origimag)/2.5)

cumjfluxfac = 10.^(-(newjmag-origjmag)/2.5)

cumhfluxfac = 10.^(-(newhmag-orighmag)/2.5)

cumksfluxfac = 10.^(-(newksmag-origksmag)/2.5)

cumw1fluxfac = 10.^(-(neww1mag-origw1mag)/2.5)

cumw2fluxfac = 10.^(-(neww2mag-origw2mag)/2.5)

cumw3fluxfac = 10.^(-(neww3mag-origw3mag)/2.5)
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print, "The flux factors are: ",vfluxfac,rfluxfac,ifluxfac, $

jfluxfac,hfluxfac, $

ksfluxfac,w1fluxfac,w2fluxfac,w3fluxfac

; print, "The cumulative factors are: ",cumvfluxfac,cumrfluxfac

w25fluxfac = (w2fluxfac +w3fluxfac)/2. ; mean of w2 and w3 to $

; cover polynomial gap

effwave = [min(longwave),veffwave,reffwave,ieffwave, $

jeffwave,heffwave, $

kseffwave,w1effwave,w2effwave,w25effwave,w3effwave, $

200000L,max(longwave)]

fluxfac = [vfluxfac,vfluxfac,rfluxfac,ifluxfac,jfluxfac, $

hfluxfac,ksfluxfac, $

w1fluxfac,w2fluxfac,w25fluxfac,w3fluxfac,w3fluxfac,w3fluxfac]

if itcounter eq 0 then begin

initialmaxflux = max(fluxinphotons)

if max(fluxfac) ge 1 then begin

plot,effwave,fluxfac,psym=1,yrange=[0,max(fluxfac)+0.2], $

xstyle=1,/xlog,title="SED Calibration for "+objname, $

xtitle="Wavelength in Angstroms", $

ytitle="Normalized Photon Flux", charsize=1.2, $

xcharsize=1.2,ycharsize=1.2, $

charthick=4,thick=4,xthick=4,ythick=4

;; subtitle="Dashed Lines Indicate Polynomial Fits. Dotted Spectrum $

is the Original Template"

endif else plot,effwave,fluxfac,psym=1,yrange=[0,1.2], $

xstyle=1,/xlog,title="SED Calibration for "+objname, $

xtitle="Wavelength in Angstroms", $

ytitle="Normalized Photon Flux", charsize=1.2, $

xcharsize=1.2,ycharsize=1.2, $

charthick=4,thick=4,xthick=4,ythick=4

; oplot, longwave,fluxinphotons/initialmaxflux,linestyle=1
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oplot, longwave,fluxinphotons/max(fluxinphotons),linestyle=5

endif else oplot,effwave,fluxfac,psym=1

; print, "The flux factors are ",vfluxfac,rfluxfac,ifluxfac, $

jfluxfac,hfluxfac,ksfluxfac,w1fluxfac,w2fluxfac,w3fluxfac,w4fluxfac

polyresult = poly_fit(alog10(effwave/(10.^4)),fluxfac,9)

fluxmultarray = polyresult[0] + polyresult[1]* $

(alog10(longwave/1.e4)) $

+ polyresult[2]*(alog10(longwave/1.e4))^2. + $

polyresult[3]*(alog10(longwave/1.e4))^3. + $

polyresult[4]*(alog10(longwave/1.e4))^4. + $

polyresult[5]*(alog10(longwave/1.e4))^5. + $

polyresult[6]*(alog10(longwave/1.e4))^6. + $

polyresult[7]*(alog10(longwave/1.e4))^7. + $

polyresult[8]*(alog10(longwave/1.e4))^8. + $

polyresult[9]*(alog10(longwave/1.e4))^9.

; print,"polynomial coeficients: ",polyresult

oplot,longwave,fluxmultarray,linestyle=3

fluxinphotons = fluxinphotons * fluxmultarray ;$

; applies multiplicative factor

itcounter ++

; print,"End of iteration number ",itcounter

; print, ’ ’

; print, objname

endif else begin

residuals = ’good’

oplot, longwave,fluxinphotons/max(fluxinphotons)

print,"SED calibration solution converged after ", $

itcounter," iterations."

print, "The final flux factors are ",vfluxfac,rfluxfac, $

ifluxfac,jfluxfac,hfluxfac,ksfluxfac,w1fluxfac,w2fluxfac,w3fluxfac

endelse

if itcounter ge 99 then begin

oplot, longwave,fluxinphotons/max(fluxinphotons)

residuals = ’good’

print,"WARNING! SED calibration residuals did not converge. $

Stopping at 100 iterations."

print, "The final flux factors are ",vfluxfac,rfluxfac,ifluxfac, $

jfluxfac,hfluxfac,ksfluxfac,w1fluxfac,w2fluxfac,w3fluxfac
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endif

endwhile

cumvfluxfac = cumvfluxfac / cumhfluxfac

cumrfluxfac = cumrfluxfac / cumhfluxfac

cumifluxfac = cumifluxfac / cumhfluxfac

cumjfluxfac = cumjfluxfac / cumhfluxfac

cumksfluxfac = cumksfluxfac / cumhfluxfac

cumw1fluxfac = cumw1fluxfac / cumhfluxfac

cumw2fluxfac = cumw2fluxfac / cumhfluxfac

cumw3fluxfac = cumw3fluxfac / cumhfluxfac

cumhfluxfac = cumhfluxfac / cumhfluxfac

print,’’

print, "The cumulative fractional changes are: ",cumvfluxfac,cumrfluxfac, $

cumifluxfac,cumjfluxfac,cumhfluxfac,cumksfluxfac,cumw1fluxfac,$

cumw2fluxfac, $

cumw3fluxfac

print,’’

fluxergcal = double(fluxinphotons*((h*c)/longwave))

obsflux = double(total(fluxergcal))

;;; Now calculate the uncertainties. To do that,

;;; first calculate the final flux through each filter.

;;;

;print,"First element of longwave ",longwave[0]

finalvflux = double(total(fluxergcal[4800-4000:6500-4000]))

finalrflux = double(total(fluxergcal[5500-4000:8500-4000]))

finaliflux = double(total(fluxergcal[7000-4000:9000-4000]))

finaljflux = double(total(fluxergcal[11000-4000:13500-4000]))

finalhflux = double(total(fluxergcal[15000-4000:18000-4000]))

finalksflux = double(total(fluxergcal[19500-4000:23500-4000]))

finalw1flux = double(total(fluxergcal[28000-4000:40000-4000]))

finalw2flux = double(total(fluxergcal[40000-4000:53000-4000]))

finalw3flux = double(total(fluxergcal[75000-4000:170000-4000]))



246

fluxcoveredfrac = (finalvflux + finalrflux +finaliflux + finaljflux $

+finalksflux + $

finalw1flux + finalw2flux + finalw3flux)/obsflux

print, "Fraction of SED sampled by photometry: ",fluxcoveredfrac

photfluxerr = ((vmagerr*finalvflux)^(2d)+(rmagerr*finalrflux)^(2d)+ $

(imagerr*finaliflux)^(2d) + $

(jmagerr*finaljflux)^(2d)+(hmagerr*finalhflux)^(2d)+ $

(ksmagerr*finalksflux)^(2d) + $

(w1magerr*finalw1flux)^(2d)+(w2magerr*finalw2flux)^(2d)+ $

(w3magerr*finalw3flux)^(2d))^(1d/2d)

photfluxerr = photfluxerr / fluxcoveredfrac

print, "fluxes in each band: "

print, "photometry error: ",photfluxerr

;;Define the fractional residuals

vfluxres = double(vfluxfac -1.)

rfluxres = double(rfluxfac -1.)

ifluxres = double(ifluxfac -1.)

jfluxres = double(jfluxfac -1.)

hfluxres = double(hfluxfac -1.)

ksfluxres = double(ksfluxfac -1.)

w1fluxres = double(w1fluxfac -1.)

w2fluxres = double(w2fluxfac -1.)

w3fluxres = double(w3fluxfac -1.)

;;Correct the flux by adding the residuals

obsflux = obsflux + ((vfluxres * finalvflux) + (rfluxres * finalrflux) $

+ (ifluxres * finaliflux) + $

(jfluxres * finaljflux) + (hfluxres * finalhflux) + $

(ksfluxres * finalksflux) + $

(w1fluxres * finalw1flux) + (w2fluxres * finalw2flux) + $

(w3fluxres * finalw3flux))
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fitfluxerr = ((vfluxres * finalvflux)^(2d) + (rfluxres * finalrflux)^(2d) $

+ (ifluxres * finaliflux)^(2d) + $

(jfluxres * finaljflux)^(2d) + (hfluxres * finalhflux)^(2d) $

+ (ksfluxres * finalksflux)^(2d) + $

(w1fluxres * finalw1flux)^(2d) + (w2fluxres * $

finalw2flux)^(2d) $

+ (w3fluxres * finalw3flux)^(2d))^(1d/2d)

fitfluxerr = fitfluxerr / fluxcoveredfrac

obsfluxerr = (photfluxerr^(2d) + fitfluxerr^(2d))^(1d/2d) ;;$

This is the final flux error on earth

print,"The flux from 0.4 to 30 microns is ",obsflux," $

erg/s/cm2 +- ",(obsfluxerr/obsflux)*100,’ percent.’

;read,"Press any key to continue: ",anykey

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;; PART 2 -- BLACKBODY FIT ;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; The luminosity is L = 4 * pi * obsflux * d^2,

;; where d is the distance to the star in cm.

;; 1 pc = 3.086e18 cm

print, "The parallax is ",prlx

print, "the distance is ",1./prlx

luminosity = double(4d * double(!pi) * $

obsflux *(double(3.086e18)/double(prlx))^2d)

help,luminosity

print, luminosity

;;The solar luminosity is 3.827e33 erg/sec

;;The luminosity error is calculated by

print,’parallax error ’,perr

lumerr = double(4d * double(!pi)*(double(3.086e18)^(2d)) * $

(((1d/(prlx^(2d)))*obsfluxerr)^(2d) + $

((-2d*obsflux/(prlx^(3d)))*perr)^(2d))^(1d/2d))
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lumsolunit = double(luminosity/(3.827e33))

lumsoluniterr = double(lumerr/(3.827e33))

print,"Luminosity error (ergs)",lumerr

print,"Luminosity error (percent) ", (lumerr/luminosity)*100.

;;The stellar radius is calculated by R = (L/(4*pi*sb))^(1/2)*1/(Teff^2)

;;where sb is the stephan-Boltzman constant, sb = 5.67e-5 erg/cm^2/K^4/sec

sb = 5.67e-5

radiuscm = double(((luminosity/(4. * !pi * sb))^(1./2.))*(1./(teff^2.)))

radiuscmerr = double((1./(4.*!pi*sb))^(1./2.) * $

((lumerr/(2.*luminosity^(1./2.) * teff^2.))^2. + $

((-2.*luminosity^(1./2.)*tefferr)/(teff^3.))^2.)^(1./2.))

radiussol = double(radiuscm/(6.96e10))

radiussolerr = double(radiuscmerr/(6.96e10))

radiusjup = double(radiuscm/(7.1492e9))

radiusjuperr = double(radiuscmerr/(7.1492e9))

print,"radius errors (cm,sol,jup) ",radiuscmerr,radiussolerr,radiusjuperr

print,"percent radius error ",(radiuscmerr/radiuscm)*100.

print,’ ’

print,objid,’ ’,objname,’ ’,spt,teff,luminosity,lumsolunit,radiussol, $

radiusjup

print,’ ’

read,"Enter (1) to save results, (2) to save but comment out the line, or $

(3) to discard: ",savestatus

;;;savestatus = 3

if savestatus eq 1 or savestatus eq 2 then begin

openu,unit1,outfile, /get_lun, /append, width=500

space = ’ ’
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commentout = ’## ’

if savestatus eq 1 then printf,unit1,objid,space,objname,space,spt, $

teff, $

tefferr,luminosity,lumerr,lumsolunit,lumsoluniterr,radiussol,radiussolerr, $

radiusjup,radiusjuperr

if savestatus eq 2 then printf,unit1,commentout,objid,space,objname,$

space, $

spt,teff,tefferr,luminosity,lumerr,lumsolunit,lumsoluniterr,radiussol, $

radiussolerr,$

radiusjup,radiusjuperr

free_lun,unit1

endif

device, /close

end
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The previous code required each object to be entered separately. The following code

automates it by reading the input lines from a file.

pro autocalsed,infile,outfile

colorset

longreadcol,infile,objid,objname,spt,template,prlx,perr,pcode,teff, $

tefferr,vmag,verr,rmag,rerr,imag,ierr,jmag,jerr,hmag,herr,kmag,kerr,$

w1mag,w1err,w2mag,w2err,w3mag,w3err,format=’i,a,a,a,f,f,i,f,f,f,f,f, $

f,f,f,f,f,f,f,f,f,f,f,f,f,f,f’, /silent

;; readcol,infile,w2mag,w2err,w3mag,w3err,format=’x,x,x,x,x,x,x,x,x, $

x,x,x,x,x,x,x,x,x,x,x,x,x,x,f,f,f,f’, /silent

listsize = n_elements(objid)

print, "Now reading band transfer functions."

readcol,"V_curve.txt",vwave,vtrans,format="L,d", /silent

readcol,"R_curve.txt",rwave,rtrans,format="L,d", /silent

readcol,"I_curve.txt",iwave,itrans,format="L,d", /silent

readcol,"J_RSR_curve.txt",jwave,jtrans,format="L,d", /silent

readcol,"H_RSR_curve.txt",hwave,htrans,format="L,d", /silent

readcol,"Ks_RSR_curve.txt",kswave,kstrans,format="L,d", /silent

readcol,"intw1curve.txt",w1wave,w1trans,format="L,d", /silent

readcol,"intw2curve.txt",w2wave,w2trans,format="L,d", /silent

readcol,"w3curve.txt",w3wave,w3trans,format="L,d", /silent

read,"Enter number ID of first object: ",firstline

beginhere = where(objid eq firstline)

for i=beginhere[0],listsize-1 do begin

;;;;; On the next line, use calsed7 for screen graphics, calsed8 to

;;;;; save as postscript, or calsed9 to save publication quality,

;;;;; calsed10 for one iteration only.

;;;;; calsed9 broke. clased8 will now do publication quality.

calsed8,objid[i],objname[i],spt[i],template[i],prlx[i],perr[i], $

pcode[i],teff[i],tefferr[i],vmag[i],verr[i],rmag[i],rerr[i],imag[i], $

ierr[i],$

jmag[i],jerr[i],hmag[i],herr[i],kmag[i],kerr[i],w1mag[i], $
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w1err[i],w2mag[i],w2err[i],w3mag[i],w3err[i],outfile,$

vwave,vtrans,rwave,rtrans,iwave,itrans,jwave,jtrans,hwave, $

htrans,kswave,kstrans,w1wave,w1trans,$

w2wave,w2trans,w3wave,w3trans

anykey = ’ ’

; read,’Press ENTER to continue.’,anykey

print, ’ ’

print, ’ ’

endfor

end
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