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ABSTRACT

The Jupiter Trojan asteroids are minor bodies that orbit 60 degrees before and 60 degrees
behind Jupiter. Because these orbits are stable over the lifetime of the Solar System, the
properties of these objects may inform us about the conditions under which the Solar System
formed. We present BV RI photometry for 110 of the intrinsically brightest and presumably
largest members of the L4 and L5 Jupiter Trojans. We use a new principal color component
derived by Chatelain et al. (2016) that is indicative of taxonomic types relevant to the Jupiter
Trojan asteroids. We find that 83% of the largest Jupiter Trojans are consistent with a D-
type classification, while 17% show shallower slopes more consistent with X-type and C-type
classifications. We show the L4 and L5 populations to be taxonomically indistinguishable
at large sizes, as well as include findings about certain objects that have resulted from
these data. Specifically, multi-filter light curves for twelve objects show signs of V' — I color

variation in as many as two thirds of these objects, and our richest datasets allow for the



determination of phase curves and shapes for some asteroids including a new shape model
and pole solution for 1173 Anchises. Our goal is to use this study to shed light on these
fascinating objects and to place the Trojans in context in the larger Solar System.
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Introduction

1.1 Asteroids: Minor Bodies in the Solar System

Minor bodies exist scattered throughout the Solar System as debris left over from when the
Sun and major planets were formed. The minor bodies that remain in the Solar System
today contain only a tiny fraction of the Solar System’s mass, but a huge percentage of
its surface area. They are responsible for shaping the surfaces of the terrestrial planets in
fundamental and lasting ways and are possibly even responsible for the current orbits of the
giant planets. As technology and our understanding of the Solar System improves, these
objects have become an increasingly important source of inquiry and exploration as they
play not only a vital role in our past, but, perhaps, our future.

Minor bodies can range in size from worlds a thousand kilometers across to mountains
in space, a few dozens of kilometers in size, to boulders only a few meters in diameter. The
largest of these objects, like (1) Ceres and (134340) Pluto, are known as dwarf planets, while
the rest may be comets, asteroids, or both. Here we will largely avoid discussion of comets,
but instead focus on non-active minor bodies found across the Solar System. The primary
focus of this work is on the Jupiter Trojan population that is co-orbital with Jupiter at
5.2 AU from the Sun, but first we will give a brief introduction to the locations, names, and
descriptions of populations of minor bodies at a variety of heliocentric distances.

Groups and subgroups of minor bodies are discussed here in order of generally increasing
semi-major axis. Jupiter Trojans are saved for Section 1.2 to be discussed in more detail. All

population numbers given in this chapter are determined using either the JPL Small-Body



Database Search Engine' or the lists provided by the International Astronomical Union’s
Minor Planet Center? as of April, 2017. The spatial distributions of the various populations
are shown in Figure 1.1 and Figure 1.3, and detailed descriptions of the orbital elements

discussed in this chapter are given in Appendix A.

1.1.1 NEOs

The population of Near Earth Objects (NEOs) includes over sixteen thousand asteroids that
come within 1.3 AU of the Sun. As a group, these objects are of particular interest as
they tend to be the most accessible minor bodies in the Solar System. This means that
they pose the greatest threat of impact, as well as the greatest potential benefit in terms
of resources. Understanding the dynamics, composition, and distribution of these objects
is critical as humanity begins its efforts to build infrastructure that might facilitate future
space exploration and exploitation.

It is generally believed that NEOs are sourced from instability regions in the Main Belt.
As small objects, likely the result of collisions, slowly migrate into resonant orbits with
Jupiter, their eccentricities are ramped up until they begin to interact with the rocky planets
of the inner Solar System. Eventually these objects enter orbits that bring them close enough
to Earth to be considered NEOs where they tend to survive for about 10 Myrs (Bottke et al.
2002). The time it takes an individual object to reach such an orbit is determined by the

part of the Main Belt in which it originated.

https://ssd.jpl.nasa.gov/sbdb_query.cgi
2http://www.minorplanetcenter.net/iau/lists/MPLists.html
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Figure 1.1: A plot of semi-major axis vs. eccentricity for the dynamical groups of the
inner Solar System and Jupiter Trojans. Descriptions of the individual dynamical groups
are given in Subsection 1.1.1 and Subsection 1.1.2. The specific Main Belt boundaries used
here are the 4:1 resonance at 2.06 AU for the Inner Main Belt and the 5:2 resonance at
2.89 AU for the Outer Main Belt. Gray bars show the orbital ranges of the planets from
aphelion to perihelion. Note the relative width of the orbits of Mars (") and Jupiter (%). All
data presented here are from the International Astronomical Union’s Minor Planet Center
(http://www.minorplanetcenter.net/data.)

NEOs are further divided into dynamical subclasses based on the particular circum-

stances of their orbits and their proximity to the orbit of Earth. Here we discuss four major

subgroups.



Atiras

Named for (163693) Atira, these NEOs have orbits entirely with Earth’s orbit. The sunward
direction of these objects makes them exceptionally difficult to detect, and though we only
know of a few (fewer than twenty have been discovered so far) it is likely that many more

exist. These objects can be seen to the far left in Figure 1.1.

Atens

This dynamical subgroup is named for its exemplar, (2062) Aten, which has an Earth-crossing
orbit and semi-major axis within Earth’s orbit. So far, 1,170 objects have been discovered
with similar Earth-crossing orbits. These objects are generally more mission accessible than

Atiras or Amors, and could also pose impact threats if they have low enough inclinations.

Apollos

More than 8,700 objects have semi-major axes outside Earth’s orbit and perihelia inside
1 AU. This second group of Earth-crossing asteroids is named for (1862) Apollo. Similarly
to the Atens, these objects pose a threat to Earth if their inclinations are low, and are

generally better mission targets than Atiras and Amors.

Amors

Any asteroid with a perihelion between 1 AU and 1.3 AU is considered an Amor. This group
is named after (1221) Amor, which has a semi-major axis of 1.9 AU and an eccentricity (e)
of 0.44, resulting in a perihelion distance (q) of 1.08 AU. There are 6,138 known asteroids

that belong to this classification. Along with Apollos, Amors with a semi-major axis greater



than 2.0 AU spend most of their time among Main Belt objects, but their high eccentricities

bring them much closer to the Sun compared to other Main Belt objects.

1.1.2 Main Belt

The vast majority of Solar System small bodies that have been discovered so far exist in the
space between Mars and Jupiter, a region referred to as the “Main Belt.” To date, nearly
700,000 objects have been discovered in this region. With such vast numbers of relatively
nearby objects, it is no wonder that this dynamical group has seen the most comprehensive
study since the discovery of its first and largest member, (1) Ceres by Giuseppe Piazzi on
January 1st, 1801 (Piazzi 1801). As the largest reservoir of known asteroids, and as the
likely source region for NEOs, the Main Belt has proven scientifically interesting in its own
right. It has also been the target of several space missions, including flybys of certain objects
from craft heading to the outer Solar System. Recently, the Dawn spacecraft has visited (4)
Vesta and (1) Ceres, orbiting Vesta for over a year before heading to Ceres in 2015 where it
is planned to remain indefinitely. Additionally, a mission to (16) Psyche has been approved
by NASA and should launch in 2022. The mission, which shares a name with its target, will
orbit Psyche for at least 21 months collecting data.

This intense scrutiny has lead to the discovery of collisional families within the larger
Main Belt population. Generally speaking, these families are named for their largest members
and share similar compositions and orbital elements. Several of these families can be readily
seen in Figure 1.2 from Parker et al. (2008). Though interlopers are possible through normal
asteroid migration, it is suspected that the majority of each family’s members are the result

of a massive collisional event in the past that largely disrupted a parent body and resulted



in a large number of objects with similar properties and orbits. The age of the family (or
date of the collision) can be estimated by measuring the spread of family members in orbital
space vs. their sizes, as smaller objects will be more susceptible to effects such as Yarkovsky
drift® than larger members. Though first investigated and most obvious in the Main Belt,
collisional families exist in many of the large dynamical groups throughout the Solar System,
including Jupiter Trojans and Trans-Neptunian Objects.

Similarly to NEOs, the Main Belt can also be subdivided into dynamical subgroups based

on their orbital elements; here we outline five subgroups.

3The Yarkovsky effect is a phenomenon, first described by Ivan Yarkovsky around 1900, that causes a
change in the orbits of relatively small asteroids (D < 40 km) over time. This change is due to the unequal
emission of thermal radiation from the surface of the body, which results in a steady change in orbital energy
that depends on the object’s rotation period and pole orientation. Bottke et al. (2006) discuss the Yarkovsky
effect in detail.
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Figure 1.2: Figure from described by Parker et al. (2008)* . Sloan Digital Sky Survey
Moving Object Catalog 4 data for Main Belt Asteroids. Each plot shows eccentricity vs.
sine of the inclination for objects in the Inner Main Belt (a < 2.5 AU, left), Middle Main
Belt (2.5 AU < a < 2.82 AU, center), and Outer Main Belt (2.82 AU < a < 3.5 AU, right).
The top row is all of the MOC4 data colored by the principal component a*, the middle row
is only families, and the bottom row is background objects with collisional families removed.

%http://www.astro.washington.edu/users/ivezic/r_solarsystem.html

Mars-Crossers

Ultimately, there are as many as 29,600 known objects with an orbit that crosses the orbit of
Mars. However, 47% of these are considered NEOs as they also come within 1.3 AU of the

Sun, including the vast majority of the Apollo and Amor subgroups discussed above. The



remaining 15,400 Main Belt Mars-Crossers have a perihelion between 1.3 AU and 1.666 AU,

or roughly the width of the Martian orbit.

Inner Main Belt

The exact boundaries of the Inner, Middle, and Outer Main belt are poorly defined and
somewhat dependent on the region an author is keen to discuss. In most cases, however, the
Kirkwood gaps are used as boundaries. These “gaps” are the result of certain resonances
with Jupiter that have resulted in few objects surviving with the corresponding semi-major
axes. The Inner Main belt is often defined as objects with a semi-major axis less than either
that associated with the 4:1 or 3:1 resonance with Jupiter (about 2.06 AU and 2.50 AU,
respectively.) This categorization may or may not exclude Mars-Crossers with a perihelion
less than 1.666 AU. Depending on the region examined, the population of this group ranges
from as few as 14,800 objects to as many as 230,000 objects. DeMeo & Carry (2013) give a
taxonomic breakdown for Main Belt asteroids in each dynamical group and found that the
Inner Main Belt is mostly populated by S- and V-type asteroids, with only 6% of resident

objects being of the C- or D-type?.

Outer Main Belt

The resonances that mark the inner boundary of the Outer Main Belt are typically the 5:2
resonance at 2.82 AU or the 2:1 resonance at 3.27 AU. The outer extent of this region is
usually taken as the orbit of Jupiter, but excludes the Jupiter Trojans in the 1:1 resonance.

The Outer Main Belt population can range from just over 7600 objects to nearly 214,000

4Asteroid Taxonomy is discussed in much more detail in Section 5.1, but is ultimately a way of cate-
gorizing objects based on spectral and photometric observations which are ultimately linked to an object’s
composition. Classification schema vary, but tend to rely on a single or double letter notation that implies
a certain spectral or photometric signature.



objects, depending on whether one uses the inner or outer resonance. DeMeo & Carry (2013)
found a very diverse population in the Outer Main Belt. They estimate that 52% of this
population is C-type and only 6% S-type objects. The remaining population is made up of

a variety of different types.

Middle Main Belt

The Middle Main Belt is vaguely defined as the region between the Inner and Outer Main
Belts. This is the most densely populated part of the Main Belt, with a population ranging
from 247,000 within the most conservative boundaries to 669,000 objects at the most gen-
erous. Taxonomically, this group is dominated by C-Type asteroids (70%), with only 8% of
the population consisting of S-types (DeMeo & Carry 2013). Demographics of the remaining

population are complex and made up of many different taxonomic types.

Hildas

The Hilda population consists of about 3000 known objects in a stable 3:2 resonance (a =
4.0 AU) with Jupiter. The largest member and namesake of this population is (153) Hilda,
which also has its own collisional family within the dynamical group of resonant objects.
The orbits of these objects are stable because members of this group reach aphelion only in
opposition to Jupiter or at the L4 and L5 Lagrange points discussed in Section 1.2. Over
three successive orbits, each individual Hilda will visit each of these three locations, mapping
out an equilateral triangular orbit in Jupiter’s rotational reference frame. As these objects
are some of the only asteroids whose orbits both cross the Outer Main Belt and enter the .4

and L5 Jupiter Trojan clouds, their composition is of great interest. DeMeo & Carry (2013)



10

estimate 71% of Hildas to be P-type (a classification included in the X-complex classification
found in Subsection 2.5.1). The remaining 29% of objects are fairly evenly split between D-
and C-type objects. These demographics show a stark contrast to those seen in the Trojan

clouds discussed in Section 1.2.

1.1.3 Centaurs

Transient objects with lifetimes of at most a few million years (Horner et al. 2004), Centaurs
orbit among the major planets of the outer Solar System. They have semi-major axes between
the orbits of Jupiter and Neptune, and they generally cross the path of at least one of the four
giant planets. There are 219 known Centaurs, and these objects occasionally show cometary
activity implying an outer Solar System origin for at least some members. Centaurs tend
to be dark and red (Tegler et al. 2016), with a clear bimodality in their color distribution
(see Subsection 5.1.3). As can be seen in Figure 1.3, Centaurs are evenly distributed in

eccentricity as they are scattered by the giant planets.
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Figure 1.3: A plot of semi-major axis vs. eccentricity for the dynamical groups of the outer
Solar System and Jupiter Trojans. Descriptions of the individual dynamical groups are given
in Subsection 1.1.3 and Subsection 1.1.4. Resonant objects are plotted separately in gray
(Plutinos) and light blue. The orange points to the upper right are detached or scattered
KBOs that don’t fall into the classical populations (Cold Classical: bright red; Hot Classical:
blue). Gray bars once again represent the orbital widths of the planets, but due to the log
scale on the x axis, relative widths between planets might be misleading. All data presented
here is from the International Astronomical Union’s Minor Planet Center °.

1.1.4 Trans-Neptunian Objects

Trans-Neptunian Objects (TNOs) comprise a large population of minor bodies that have
semi-major axes beyond the orbit of Neptune. To date, 2,326 minor bodies have been

discovered with orbits beyond that of Neptune. As many of these objects are quite large
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and bright, they have been fairly well studied despite their large distances from the Sun.
Most recently, (134340) Pluto and its cadre of moons were visited by the New Horizons
spacecraft for the first detailed surface study of any of these objects. TNO modelling efforts
have predicted that there are massive numbers of objects and a primordial TNO mass of
nearly 10 Mg. These models are primarily based on how much material would be required to
build the largest TNOs that we see today in the low energy environment of the early outer
Solar System. However, more recent deep surveys have found significantly fewer objects
than are predicted by these models. The survey performed by Bernstein et al. (2004) not
only suggests a significant decrease in TNO sizes beyond 40 AU, but also a mass for the
current TNO population of less than 10 times the mass of Pluto or ~ 0.02 Mg. Like the
Main Belt and NEO populations, TNOs are often divided into various dynamical groupings.
Most of the these groupings tend to be based on the energetics of their orbits rather than
their semi-major axes, with high inclination objects being separated from objects with lower
energy orbits. Additionally, there are many mean motion resonances (MMRs) with Neptune
that provide zones of stability and show overpopulations relative to the background TNO
distribution. As with previous populations, here we provide general parameters for five of
these subgroups. Different studies divide up this population in different ways depending on
what aspects of it are to be explored. We attempt to describe in general terms what objects

are usually meant when these subgroups are referenced.

Resonant Objects

There are hundreds of objects that have been discovered in resonant orbits with Neptune.

A mean motion resonance (MMR) is described in terms of the integer number of orbits it
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takes for the two bodies to return to the same relative positions. This is usually denoted as
M : N where M gives the number of orbits made by the inner body and N is the number of
orbits made by the outer body. These resonances vary in strength, with stronger resonances
tending to be those with the least difference between between M and N. There are 17 TNOs
at the 1:1 resonance at 30.1 AU. Thirteen of these Neptune Trojans have been discovered
at the L4 point and four at the L5 point. It is generally believed that these objects were
captured into various stable resonances as Neptune migrated during the early Solar System.
These objects are plotted in light blue in Figure 1.3 and can be seen to form thin vertical

lines in that figure.

Plutinos

The best populated resonant group is that of the 3:2 resonance (39.46 AU). These objects
are named for their first discovered (and most popular with the general public) member as
a consolation prize for Pluto’s “demotion” by the International Astronomical Union (IAU)
from planet to dwarf planet®. About a third of the total resonant TNO population is at the

3:2 resonance, accounting for over 300 objects.

Kuiper Belt Objects

Kuiper Belt Objects (KBOs) are those that reside within the Kuiper belt or (Edgeworth-
Kuiper belt) that extends from the orbit of Neptune to about 50 AU or so. This group
of objects includes most of the TNOs so far discovered as well as most of the dynamical

groupings described here, with the occasional exception of Scattered Disk Objects (SDOs).

6In actuality, the name "Plutino” was used to describe this population by Jewitt & Luu (1996) a decade
before the TAU defined Pluto as a minor planet in 2006.



14

Usage of terms in the literature is inconsistent at best with TNO and KBO sometimes being
used interchangeably and sometimes being used to refer to very specific populations, which
themselves can vary between publications. In the most general terms, however, KBOs are
objects that reside in a disk of objects that exists past Neptune, but does not typically

include objects in the scattered disk, or the hypothesized Oort cloud.

Hot and Cold Classical Objects

These objects are the ones that largely make up the Kuiper belt. They have a perihelion
outside of Neptune’s orbit and are separated by inclination: the Cold Classical objects
typically have inclinations less than 5° and Hot Classical objects have ¢ > 5°. The outer
boundary of the classical region is somewhat poorly defined, but it is expected to be at about
50 AU. More than 1,800 objects have been discovered in the classical region, with about 750

considered Cold Classical and 1,050 Hot Classical.

Scattered Disk Objects

Scattered Disk Objects (SDOs) are often highly eccentric objects with semi-major axes be-
yond Neptune, but they will often have orbits that cross Neptune’s orbit. As these objects
cross Neptune’s orbit, but are not in a stable resonance, they are likely to have relatively
short lifetimes and high probabilities of being scattered. (136199) Eris is the largest of the

476 known members of this population and of the TNO population in general.

1.2 Jupiter Trojans
Jupiter Trojans are minor bodies that are co-orbital with Jupiter in a 1:1 MMR, held stable

near the .4 and L5 Lagrange points. There are 6510 known asteroids in these special
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orbits with Jupiter. Jupiter Trojans are of particular interest because they represent a large
number of potentially primordial objects that have experienced little mixing with other
asteroid populations since capture into their present orbits. The glimpse that these objects
provide into the composition and evolution of the early Solar System make Jupiter Trojans
important objects for observation and study. Additionally, they are located at an important
location between the inner and outer Solar System. Jupiter Trojans are plotted in magenta

in both Figure 1.1 and Figure 1.3.

1.2.1 History

Lagrange (1772) first proposed the existence of stable regions 60° to each side of an orbiting
body as part of his analysis of the three-body problem. These regions of stability within
the gravitational potential of an orbiting body later became known as the 4th and 5th
Lagrange points, typically referred to as L4 and L5 respectively. It wasn’t until February,
1906, however, that any objects were discovered in an orbit that placed it within one of
these points. Wolf (1906) discovered asteroid 1906 TG (Berberich 1906), eventually named
(588) Achilles, near the L4 point of Jupiter. (617) Patroclus was discovered near the L5
point later that year, and Jupiter Trojans would continue to be sporadically discovered
for the next several decades. Eventually, a naming convention was established such that
objects discovered near the L4 point were named for Greek warriors described in the Iliad,
Odyssey, and Aeneid as present during the Trojan war, while asteroids discovered on the
other side of Jupiter were named for heroes of Troy and her allies. This left a few members
discovered earlier, namely (617) Patroclus and (624) Hektor, as spies within the enemy

camps. Thus, generally, objects at the Lagrange points of a planet became known as Trojan
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asteroids, and Jupiter Trojans could be described as L4 Greeks if present in the leading
camp, and L5 Trojans if found in the trailing camp. Discoveries began to speed up when
van Houten et al. (1970b) published 19 objects discovered during the Palomar-Leiden survey,
which inspired a dedicated examination of the 1.4 camp that revealed an additional 45 objects
(van Houten et al. 1970a). Since then, thousands of Jupiter Trojans have been discovered
in each camp, and these populations have become widely studied both due to their nature
as an intermediate population between the very different asteroid demographics of the inner
and outer Solar System as well as the role they play as a litmus test for various Solar System

formation models.

1.2.2 Solar System Formation

The Nice Model was first proposed in three papers in 2005. Specifically, Tsiganis et al.
(2005) used numerical simulations to show that the current Solar System configuration can
be reproduced using relatively large scale migration of the giant planets. Such a migration
could have been caused by the destruction of a large asteroid belt extending out to about
35 AU and containing as much as 35Mg of material. Eventually, energy exchange between
the asteroids and Jupiter would bring Jupiter into a 2:1 resonance with Saturn that would
shake the Solar System. In some simulations, such as that shown in Figure 1.4, this even
caused the two outermost giant planets to swap places. Such a process is shown to result in
orbital eccentricities and inclinations for the giant planets that are similar to what we see
now and that are difficult to produce through normal planet formation models that suggest
much more circularized orbits. Additionally, Gomes et al. (2005) suggest that this period

of instability could have resulted in a large number of planetesimals being flung into the
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inner Solar System, creating the Late Heavy Bombardment (LHB). The LHB is an event
hypothesised to have occurred around 700 million years after the planets formed because of a
large increase in the cratering rate of terrestrial planets and the Moon around this time period
(Hartmann et al. 2000). In the last of the initial Nice Model papers, Morbidelli et al. (2005)
dealt with the fate of Jupiter Trojans during the 2:1 resonance between Jupiter and Saturn.
Though it is likely that Trojan asteroids were captured into Trojan orbits near the L4 and
L5 Lagrange points during initial Solar System formation as Jupiter’s mass increased, such
a massive disruption as a resonance between the two largest planets in the Solar System
would have caused most of these primordial Jupiter Trojans to be lost. Morbidelli et al.
(2005) show that with a large enough flux of objects from the outer Solar System crossing
Jupiter’s orbit just as the two gas giants left their mutual resonance, sufficient numbers of
objects could be recaptured in the Jupiter Trojan camps. Furthermore, being populated by
scattered objects in this way could reproduce the observed inclination distribution of the
two camps that will be discussed in more detail in Subsection 2.5.2 and Section 5.3.

Since its proposal, the Nice Model has become quite popular as a means of explaining
the current configuration of the outer Solar System. Many other tweaks (Morbidelli et al.
2007; Levison et al. 2011), as well as more extensive modifications, have since been proposed
to the Nice Model in an effort to shore up its failings. For example, the Grand Tack model
proposed by Walsh et al. (2011) attempts to explain the relatively small size of Mars by
having Jupiter and Saturn travel as far inward as 1.5 AU before turning around and finding
themselves in their present orbits. Additionally, the Jumping Jupiter model, first proposed
by Morbidelli et al. (2009) abandons the idea of a smooth transition across the 2:1 resonance

(~ 1Myr) in favor of a rapid one (10,000 to 100,000 years) due to the scattering of an ice
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Figure 1.4: Figure from Tsiganis et al. (2005). A full description can be found in the
original text. Semi-major axis (a), perihelion (¢), and aphelion (@) for the four giant Solar
System planets with time for an example simulation using the Nice Model scenario. The
maximum eccentricities for the final 2 million years of the simulation are given to the right of
each orbit, and the dotted line shows the time of 2:1 resonance between Jupiter and Saturn.
Note the circular nature of pre-resonance orbits and the relative positions of Uranus and
Neptune before and after the 1:2 MMR.

giant by Jupiter. Nesvorny et al. (2013) show that a rapid shift in the L4 and L5 positions
as Jupiter “jumps” across the 2:1 resonance could result in the capture of objects that were
previously formed near 5 AU. Additionally, as will be discussed in Section 5.3, this model
could account for the asymmetry seen in the number of objects between the two camps.
Reproducing the numbers, orbits, and compositional distributions of the current Jupiter
Trojan populations is of paramount importance for any of these models. Thus, improving our
knowledge the Trojan populations leads to additional constraints on the formation of not just
the surrounding minor bodies, but the evolution of the entire early Solar System. It is with
this ultimate goal in mind that we seek to examine the Jupiter Trojan color distribution for

the largest, and presumably most pristine, objects. A comparison of these objects between
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camps, as well as to various other Solar System populations, could give us a clue to their

origins, and help us discriminate between various formation models.

1.3 My Dissertation Research

Here I describe my effort to characterize the colors and attributes of the largest Jupiter
Trojans. The largest Jupiter Trojans were chosen for study due to their accessibility on
1-meter class telescopes, the fact that all of the largest objects in the Trojan camps have
been discovered to a high degree of certainty, and that these objects likely represent a
relatively undisrupted population compared to smaller Trojans whose existence is likely the
result of catastrophic collisions that have not been experienced by the large objects in the
population. For all aspects of this project, we use optical BV RI Johnson-Kron-Cousins
filters on telescopes in both the Northern and Southern Hemispheres. Observations were
made over six years from 2010 to 2016, and targets were found using ephemerides calculated

by the IAU MPC Minor Planet & Comet Ephemeris Service.

1.3.1 Photometry

Compositional characterization is necessary to determine the ultimate source or sources of
these minor bodies and to help confirm or constrain simulations such as those described
above. Emery et al. (2011), for example, show a potential bimodality present in the near-
infrared spectra of Trojans that might imply the clouds were sourced from two disparate
regions of the Solar System.

In Chapter 2 we discuss our program for obtaining and analysing photometric colors for
110 of the brightest L4 (Greek) and L5 (Trojan) Jupiter Trojans. Due to the featureless

spectra observed for Trojans (Emery et al. 2011), we can use these broadband photometric
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data to create a method for further taxonomic classification of this intermediate population
that bridges the gap between the small bodies of the inner and outer Solar System by per-
forming comparisons in both directions. Ultimately, through visible color comparisons of the
largest objects in the Greek and Trojan camps, we hope to achieve a greater understanding
of the relationship between the two Jupiter swarms and their evolutionary place in the Solar

System.

1.3.2 Light Curve Analysis

In addition to photometric colors, the rotational properties and shapes of Jupiter Trojan as-
teroids can be important indicators of collisional history and overall stability of the Jupiter
Trojan clouds, as well as internal structure and bulk composition of individual objects. Un-
fortunately, such information requires extensive observations that take place over a signifi-
cant portion of the target’s orbit, resulting in programs that are observationally expensive
and long in character, as Jupiter Trojans have roughly twelve year orbital periods. For
this reason, while most large Jupiter Trojans have fairly well defined rotation periods (e.g.
Mottola et al. 2011) that can be determined over nights or weeks, relatively few have good
shape models or pole orientation estimates that take several years to secure.

In Chapter 3 we not only present additions to the light curve coverage for a dozen large
Jupiter Trojans, but also search for the presence of color variations on the surfaces of these
objects. These data contribute to an understanding of the collisional history of the large
Jupiter Trojans and also provide a check on the precision of the mean color values deter-
mined in Chapter 2. Furthermore, we explore the rotational properties of (1173) Anchises

in significantly more depth in Chapter 4, in which we present a very precise rotation period,
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pole orientation, and axial ratios for this particular object. These efforts serve as an example
to the kind of results that can be obtained when one dedicates significant resources to light

curve observations of Jupiter Trojans.
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Trojan Photometry

2.1 Trojan Photometry in the Literature
Several Jupiter Trojan! photometric surveys that span a range of wavelengths and sample
sizes exist in the literature. Such efforts provide vital context upon which this work expands.

Karlsson et al. (2009) present (U)BV RI photometry for 27 Jupiter Trojans (H ranging
from 9.8 to 12.8)? in an effort to examine a size-slope ratio for these objects compared to
previous work on outer Main Belt objects. Two of these objects, (4791) Iphidamas and
(5130) Ilioneus, are also in the dataset presented in this work.

The most recent Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC)
(Abazajian et al. 2009; Ivezi¢ et al. 2002) contains some data on as many as five hundred
unique Greeks and Trojans. Hasselmann et al. (2011) have used these data to determine
possible taxonomies for 343 Greeks and Trojans. However, due to incomplete spatial and
temporal coverage, only 16 and 13 of these objects overlap with the largest 68 L4 Greeks
and 42 L5 Trojans examined in this work, respectively.

The Wide-field Infrared Survey Explorer (WISE) observed large portions of the Trojan
clouds at 3.4, 4.6, 12, and 22 pum. 988 known objects from the L4 camp and 754 objects
from the L5 camp have enough data for thermal fits (Grav et al. 2011) which are important

for determining albedos and sizes for these objects. While geometric albedos have been

L As discussed in Section 1.2, in general, the term Trojan is used to refer to any minor body orbiting near
either the L4 or L5 Lagrange point of a planet. Jupiter Trojans are Trojan asteroids that co-orbit with
Jupiter. Throughout this chapter and the chapters that follow, individual camps will be referred to as L4
Greeks or L5 Trojans.

2H is the absolute magnitude of a Solar System object corresponding to the apparent V magnitude an
object would have if it were located at one AU from both the observer and the Sun and viewed at a 0 degree
phase angle. This parameter is effectively a combined measure of size and albedo.
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shown to be unrelated to taxonomic type (Emery et al. 2011), Grav et al. (2012) are able to
differentiate between redder D-types and less-red Trojans using the 3.4 pum albedo due to
the difference in spectral slopes in the vis-NIR. Updated thermal models for the 110 objects
discussed here are also presented by Grav et al. (2012).

Most of the largest Jupiter Greeks and Trojans have published rotation periods (Mottola et al.
2011), with concerted efforts ongoing to extend that dataset to fainter objects (French et al.
2015). These surveys also provide separate data on the origins and evolution of the Trojan

swarms by providing information regarding collisional histories for these objects.

2.2 Survey of Jupiter Greeks and Trojans - The Sample

The data presented here are part of a project to characterize members of both of Jupiter’s
Lagrangian camps with optical photometry. In addition to the BV RI photometric colors
presented by Chatelain et al. (2016) for the L5 Trojans, in this dissertation we update the
L5 photometry and include photometry obtained for the 1.4 Greek population. This work,
in addition to the light curves discussed in Chapter 3 and Chapter 4, is part of an initiative
to better characterize the observable properties of the Greek and Trojan asteroids so that
connections between the inner and outer Solar System, as well as Solar System formation
processes, might be better understood.

For our complete photometric sample, we obtained BV RI colors for 110 Jupiter Greeks
and Trojans with an absolute magnitude H < 10, which corresponds to an effective diameter
of about 60 km. The original sample included 113 objects; 71 are in the L4 Greek camp and
the remaining 42 are in the L5 Trojan camp. This initial cut-off of H < 10 was chosen for two

primary reasons: (1) The known sample should be complete down to this limit (Szab6 et al.
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2007; Karlsson 2010), so we can be sure that our sample is unbiased and readily compared
to other samples of similarly sized objects in other populations. (2) H = 10 results in a V'
apparent magnitude between 17 and 18 for Jupiter Trojans. This is well within the faint
limits (mag ~ 20) of the 1 meter class telescopes (Table 2.1) to which we have ready access,
thus making a good sample for this project. This sample was chosen in early 2010, meaning
that some objects have updated values for H. Thus, 16 objects are now thought to be slightly
fainter than H = 10.0, with the faintest having an H of 10.4. The most recent values are

given in Table 2.3 and Table 2.4.

2.3 Observations and Data Reduction

2.3.1 Observations

A total of 162 photometric observations have been made in Johnson-Kron-Cousins (hereafter
BV RI) filters for 42 different L5 Trojans, while 155 observations have been made for 68
different L4 Greeks. As outlined in Table 2.1, many of these observations (137) were made at
the Cerro Tololo Inter-American Observatory (CTIO) 1.0-m telescope in Chile. Ninety-four
of the remaining observations were made at the CTIO 0.9-m, and the final 86 were acquired
with the Lowell 42-in. telescope in the Northern Hemisphere. These data were gathered over
thirteen observing runs from July 2010 to November 2013. Individual observations are given
in the Appendix in Section B.

Standard stars from Landolt’s equatorial sample (Landolt 2009) and Graham’s E-fields
(Graham 1982) were used to calibrate the photometry. Standard stars were chosen that
were of sufficiently faint magnitude to minimize errors due to shutter speed, and calibration

images were taken at a range of airmasses similar to those at which our targets were observed



25

Table 2.1: Telescopes Used for Observing Jupiter Trojans

Telescope  Site Instrument Filters Number of Observations
L4 Greeks L5 Trojans
1.0-m CTIO Y4KCam CCD BV Rclc 23 114
0.9-m CTIO Tek2K CCD BV RcIo 65 29
42-in. Lowell NASA42 CCD BV RcIc 67 19

to correct for atmospheric extinction. Integration times were less than 600 seconds for most
targets, so non-sidereal tracking was unnecessary because these objects have an apparent
motion of about /3 /min. Targets were specifically observed at times during which crowding
by background stars could be best avoided. All observations reported here were made on
photometric nights using BV RI filters with typical seeing of 2” or better, with individual

exposure times ranging from 60 to 900 seconds.

2.3.1.1 CTIO/SMARTS 1.0-m

Observations were made using the Cerro Tololo Inter-American Observatory (CTIO) Small
and Moderate Aperture Research Telescope System (SMARTS) 1.0-m through time allocated
by the National Optical Astronomy Observatory (NOAQO). Photometry was obtained with
this telescope during 15 nights between June and November 2011.

Images taken using the Y4AKCam on the CTIO/SMARTS 1.0-m were typically binned
in 2x2 pixels (to 07578 /pixel) to reduce readout time. Images were taken in the BV RI
filters. Details about the transmission curves for these filters can be seen in Figure 2.7. In
the I band, fringing could be readily observed for some long integration frames. The fringe
pattern was removed during the data reduction process by median combining the worst
affected images. This pattern was scaled to be at the same level as the background fringes

and then subtracted from the corresponding image.
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2.3.1.2 CTIO/SMARTS 0.9-m

Photometric observations of Greeks and Trojans using the CTIO/SMARTS 0.9-m telescope
were made on sixteen nights between July 2010 and March 2013. Some of these observations
were made using time on nights primarily dedicated to the REsearch Consortium On Nearby
Stars (RECONS?) effort to discover and characterize stars within 25 pc (Henry et al. 2006).
Thus, for several targets taken using the 0.9-m, the B filter was neglected (leaving V RI)
because it did not fit into the larger RECONS observing plan, and significant time would be
lost on B standards for relatively few frames. No binning was used for frames taken using
the 0.9-m Tek2k camera, which has a 07401 /pixel scale. At the 0.9m, observations were made
both in full chip mode (13.7" on a side) and using the central quarter of the chip (6.8" on a

side).
2.3.1.3 Lowell 42-in.

The Lowell 42-in. Hall Telescope was used for observing Jupiter Trojans on six nights between
November 2010 and November 2013. These observations were made possible through Georgia
State University’s partnership with Lowell Observatory. NASACam was used with BV RI
filters. This instrument is also subject to fringing in the I filter, which was easily removed
by subtracting a scaled fringe map made from median combining the worst affected frames.

We used 3x3 binning (07981 /pixel) for these observations.

3 wWww.recons.orq
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2.3.2 Data Reduction

On most nights, sky flats were taken. On nights when the CTIO 0.9-m was used, dome flats
were usually also acquired. These flats, in conjunction with nightly bias frames, were used to
process the data. As mentioned, for some I images on the 1.0-m and the 42-in. fringe removal
was necessary. Aperture photometry was used to calculate instrumental magnitudes. These
instrumental magnitudes were converted into apparent magnitudes using transformation
equations created using the standards discussed above. The pipeline and methodology are
described in detail in Jao et al. (2005) and Winters et al. (2011).

The primary sources of error in the photometry are the Poisson noise in calculating
the fluxes and the error in calculating nightly extinction curves using the standard star
observations. At the telescope, a signal to noise (S/N) ratio of about 150 was considered
ideal because this generally results in a magnitude error of about ~ 0.03 magnitudes. This
level of precision is essential to being able to differentiate taxonomies at visible wavelengths.
Unfortunately, this quality of data was not always achieved, particularly for faint targets
when the sky background was high. Figure 2.1 shows that when combined, these sources of
error translate into a typical uncertainty of ~ 0.03 mag for V, R, and [ filters with slightly
higher errors of ~ 0.05 mag in B due to the faintness of objects in this filter. The resulting
errors in color are characterized in Table 2.2.

Phase effects were found to be negligible for this sample due to the small phase angles
for Trojans in general and these observations specifically. Jupiter Trojans are never observed
from Earth at phase angles more than about 12°. The phase angle for each observation is

listed in Section B, and no correlation between phase and color is detectable for this sample.
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Table 2.2: Comparison of Errors for Photometric Observations

Poisson Error | Extinction Error | Rotational Error | Total Error
Color | Max Median | Max  Median | Max  Median Median
B-V]0.16 0.05 0.11 0.03 0.18 0.02 0.06
B—-R | 0.15 0.05 0.12 0.02 0.23 0.04 0.08
B—-1 |0.22 0.06 0.13 0.03 0.29 0.06 0.09
V—-—R|0.12 0.03 0.08 0.02 0.09 0.02 0.04
V—110.22 0.04 0.09 0.03 0.19 0.03 0.06
R—1 |0.22 0.03 0.10 0.03 0.15 0.02 0.04

This table gives a breakdown of the maximum and median values calculated for
each individual source of error considered for all photometric color calculations as
well as the median total error for each color. All values are in magnitudes.

For comparison, Szabé et al. (2007) calculate an offset of ~ 0.005 + 0.0017355 for g — r and
r — 1 colors.

We also examined color variation due to phase effects for Jupiter Trojans using obser-
vations from the SDSS MOC. We calculated the slope of color versus phase for each of the

226 known Jupiter Trojans that had more than a single observation in the MOC. We then

calculated a weighted mean of these slope values to find the average phase reddening for a

Trojan body. We found a value of —0.001 + 0.00473599 for g—r and 0.003 + 0.004’37“99 for r —1.

Both of these corrections are consistent with 07355 , a finding consistent with lab results for
dark asteroids (French & Veverka 1983), and were thus ignored for this sample.

An additional source of error present in the color calculations is the variation in the
reflected flux of the asteroids due to their rotations. Thus, when calculating colors based on
observations taken at different times through two different filters, an additional, unknown
error is present. Table 2.2 shows that for some objects with either relatively fast rotation
periods or particularly large lightcurve amplitudes, this error could be as much as that

of the Poisson and extinction errors. A comparison of photometric errors with and without
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Figure 2.1: Calculated photometric brightnesses versus total calculated errors for both L4
and L5 observations. In general, increased errors for faint objects are somewhat reduced by
longer exposure times. However, increased exposure time will eventually increase the error
due to ever increasing sky background, especially for moving objects. The observations in
the R and [ filters at about 0.06 mag error are primarily the result of poorer than normal
standard star correction for the night of November 10, 2012.

rotational errors in each color can be seen in Figure 2.2. For each observation, the worst case
of this error has been estimated by using the largest amplitude and best period reported
for each object in the NASA PDS Lightcurve Database (Harris et al. 2012) to estimate
the largest possible variation in color due to the time between exposures with different
filters. An estimated period and amplitude, based on the statistics for other Trojans of
similar size, were used for objects that had none available in the database. These error
estimates were calculated by assuming that photometric observations were made during
the period of highest change in bolometric brightness due to rotation as well as during a
viewing geometry coinciding with the largest amplitude ever observed for that particular
object. Thus, such errors will typically be much smaller than those estimated here. A

summary of the results is shown in Table 2.2. Additionally, in Chapter 3 we show that
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Figure 2.2: Errors in color measurements from purely photometric sources (Poisson noise
and atmospheric extinction corrections) versus total error including potential rotational vari-
ation as described in Subsection 2.3.2. The time between filters is the primary contribution
to this error due to rotation. Thus, because most observations were made in IRV B order,
B — I colors on average show the largest increase in error due to rotation. The gray line
shows a one-to-one correspondence representative of no increase in error due to rotation.

the color for individual objects may vary by more than 0.05 mag from the mean over the
course of a single rotation. Observational procedure was changed to account for this effect
by including additional observations to track changes in brightness independent of color for

runs in February and November of 2013.

2.4 Results

The photometry presented here represents the most complete sample to date of BV RI
photometry for the L4 and L5 Jupiter Trojans with H < 10. Most objects were observed at
least twice. Figure 2.3 (L4 Greeks) and Figure 2.4 (L5 Trojans) show each color calculated

for each observation reported in Table B.1 and Table B.2. Figure 2.5 and Figure 2.6 show
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the clustering of individual observations around a single weighted mean, which was calculated
for each color for each object with results for each object given in Table 2.3 and Table 2.4.
Certain objects such as 3317 (Paris) and 2357 (Phereclos) were observed with significantly
higher frequency (13 and 9 observations, respectively) as part of an effort to more completely
characterize these objects through light curve and phase curve examinations; all photometric
observations for these objects are included here for completeness. Light curve and color
curve analysis of these objects, as well as several other targets of interest are presented in
Section 3.4. Furthermore, these targets with a high frequency of visits offer an independent
test of the consistency of our methods over time and over varying telescopes and instruments.
The general uniformity in the measurements for these targets can be seen by the relatively
low errors (0.012 to 0.010 mag for Paris and 0.016 to 0.012 mag for Phereclos) for the mean
color values given in Table 2.4. Because these values include standard deviations, these data

assure us of consistent measurements in all conditions.
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Figure 2.3: L4 Greek Photometric Colors. Symbol size is inversely proportional to the
error for each data point. Both the smallest error and the mean error are shown in the lower
right corner of each plot. The data shown in 2.3(a) are also shown in Figure 2.5, in addition
to the mean values for individual L4 Greeks. Data for these plots can be found in Table B.1.
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Figure 2.4: L5 Jupiter Trojan Photometric Colors. Symbol size is inversely proportional
to the error for each data point. Both the smallest error and the mean error are shown in
the lower right corner of each plot. The data shown in 2.4(a) are also shown in Figure 2.6,
in addition to the mean values for individual Jupiter Trojans. Data for these plots can be
found in Table B.2.
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Figure 2.5: Photometry for 68 L4 Greeks. A mean value was calculated for each object,
weighted by the individual errors, and plotted in black. Individual observations are plotted
in red and connected to their mean values. Significant disparities in error can cause some
weighted means to appear to have only one observation.
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Figure 2.6: Photometry for 42 L5 Trojans. A mean value was calculated for each object,
weighted by the individual errors, and plotted in black. Individual observations are plotted
in red and connected to their mean values.
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2.5 Analysis

2.5.1 A Principal Component for Trojans

For diagnostic and classification purposes, a principal color component* such as a* defined
by Ivezié et al. (2001) can prove extremely useful because it combines multiple photometric
colors into a single parameter. However, this principal component is ill-suited for this survey
for multiple reasons. First, it is defined by Ivezi¢ et al. (2001) using ugriz magnitudes.

Fortunately, Moskovitz (2012) provides a conversion to the BV RI filter set used here:

a* =0.908 - (B—V) +0.409 - (R — Ic) — 0.856 (2.1)

However, even with this conversion to the desired filter set, a* remains less than ideal.
Originally, it was designed to create a clear separation of Main Belt objects in color-color

* —r* versus r* — i*)° to maximize

space. It is fundamentally a rotation in color space (g
this Main Belt separation, which effectively maximizes the separation between the C and S-
Complex asteroids that largely populate this portion of the Solar System. However, because
numerous surveys (e.g., DeMeo & Carry 2013) have failed to find any S-Complex objects in
either Trojan camp, such a criterion as separating C-type from S-type asteroids is not ideal
for this population. Instead, we have calculated a new principal component for the Trojan

asteroids (a}) that maximizes the separation between the D-Complex and X-Complex objects

that dominate the Trojan swarms.

4Principal Component Analysis (PCA) is a method for statistically analysing a dataset through orthogonal
transformations. By design the first principal component is defined as the rotation that maximizes the
variance along an axis. In other words it is the dimension the combines variables in such a way that it
accounts for the most variability within the sample. It is this principal component that we are interested in
here.

5The 2.5m Sloan Digital Sky Survey reports ugriz photometric values calculated from u'g’r'i’z’ filters.

Final calibrated magnitudes are given as u*g*r*i*z*.
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Figure 2.7: Three standard spectra of the Bus-DeMeo taxonomy presented in DeMeo et al.
(2009). The standard spectra are normalized at 0.55um and offset from each other by an
arbitrary amount. The variation in possible spectra that should be considered within each
taxonomic group is depicted via the 1o range shown as a solid colored region associated with
each taxonomy. The three spectra shown here were chosen as representative of the Jupiter
Greeks and Trojans because numerous surveys (e.g. DeMeo & Carry 2013) have failed to find
evidence of other types within the camps. The spectra are restricted to the visible range and
overlaid above the transmission curves for the BV RI filters used for this project (specifically
as reported for the 1.0-m). The relative slopes and variations of these standard spectra allow
us to calculate the regions in color space where such objects would appear.

Here we use the standard spectra for Bus-DeMeo taxonomy (DeMeo et al. 2009) shown
in Figure 2.7 to determine photometric regions within which D-type, X-type, and C-type
objects should be most concentrated, as shown for our data in Figure 2.8 (L4 Greeks) and
Figure 2.9 (L5 Trojans). Comparing these regions to the photometric data gathered in this
survey and previous taxonomic classifications in the literature (Neese 2010; Hasselmann et al.

2011), we determined the color space and transformation that result in the clearest taxonomic
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separations while also minimizing regional overlap. We found that B — R and V — I colors
provide the clearest divisions between classes. With a transformation and shift within this

space designed to minimize overlap between the D-type and X-type objects, we calculate a%:

at =0.152- (B — Rg) +0.988 - (V — I) — 1.01 (2.2)

This principal component is similar to the color index t* computed by Szabé et al. (2007)
in that it maximizes separation of the Trojan population into distinct groups. However, a}.
also considers Main Belt taxonomy in an attempt to readily extend the scheme into the Tro-
jan population. A comparison between a* and a% is shown in Figure 2.10 and Figure 2.11
along with the regions determined using the 1-sigma regions for Bus-DeMeo standard taxo-
nomic spectra converted to photometric BV RI colors. The aj. values were calculated for the
mean photometry of each Trojan and are given, along with the related taxonomy, for the L4
camp in Table 2.3 and for the L5 camp in Table 2.4. The linear shift of a% is conceived to
place the majority of D-type objects at an a¥. greater than 0 while X-type and C-type objects
predominantly have negative a% values. C-type objects typically show an a¥ less than —0.11,
which is directly between the Bus-DeMeo 1-sigma values for X-type and C-type asteroids.
A “flat,” perfectly reflected, solar spectrum (using solar colors presented by Ramirez et al.
(2012)) would have an aj. of —0.16. This new principal color component shows significantly
less overlap in the taxonomies present in the L4 and L5 swarms than a* and could prove to be
a much more precise method of estimating taxonomic classifications for photometric surveys
within this region of the Solar System. Though more rigorous taxonomic classification can

be done via spectroscopic analysis, the featureless Trojan spectra allow us to differentiate
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Figure 2.8: The taxonomic classifications for the brightest L4 Greeks are shown here
at their mean color values. Red data points correspond to redder, D-type objects, green
correspond to X-type and magenta correspond to C-type classifications as defined by Neese
(2010) and Hasselmann et al. (2011). Ellipses designate the 1o definitions for Bus-DeMeo
taxonomies converted into BV RI colors. The yellow asterisk shows the position of solar
colors (Ramirez et al. 2012), or the equivalent of a flat asteroid spectrum.

D-like objects from X-like and C-like objects by using photometry and the resultant a} as a

proxy for the spectral slope.
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Figure 2.9: The taxonomic classifications for the brightest L5 Trojans are shown here
at their mean color values. Red data points correspond to redder, D-type objects, green
correspond to X-type and magenta correspond to C-type classifications as defined by Neese
(2010) and Hasselmann et al. (2011). Ellipses designate the 1o definitions for Bus-DeMeo
taxonomies converted into BV RI colors. The yellow asterisk shows the position of solar
colors (Ramirez et al. 2012), or the equivalent of a flat asteroid spectrum.
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Figure 2.10: Mean photometric values for the L4 objects are plotted, converted into the
a* (Equation 2.1) and a% (Equation 2.2) parameters. The boxes show the regions dictated
by the dispersion of the Bus-DeMeo standard spectra, while the colored data show the ob-
jects with taxonomies previously determined by Neese (2010) and Hasselmann et al. (2011).
Red data points correspond to D-type objects, green correspond to X-type, and magenta
correspond to C-type classifications. The a}. regional demarcations of taxonomy are shown
as horizontal lines with the D/X dividing line being set to 0, and the X/C line near —0.11
to be half way between the X and C regions. The black diagonal line shows a one-to-
one relationship between a* and aj.. The yellow asterisk shows the position of the Sun in
principal component space, or the equivalent of a flat asteroid spectrum. There are four
previously classified objects that lie outside their taxonomic boundaries. The two D types
are (1437) Diomedes (which Neese (2010) classify as a borderline DP type) and (3793) Leon-
teus (which Hasselmann et al. (2011) reports as a D type with only a 32% confidence level.)
(5023) Agapenor is reported to be X type by Hasselmann et al. (2011) with 65% confidence,
though we show this object to be significantly less red in our a}. cross section than most X
types. Considering that this target was classified using SDSS photometry and a principal
component similar to a* this may simply be a misclassification. Finally, we show the C type
asteroid, 4060 Deipylos significantly more red than would be expected.
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Figure 2.11: Mean photometric values for the L5 objects are plotted, converted into the
a* (Equation 2.1) and a% (Equation 2.2) parameters. The boxes show the regions dictated
by the dispersion of the Bus-DeMeo standard spectra, while the colored data show the ob-
jects with taxonomies previously determined by Neese (2010) and Hasselmann et al. (2011).
Red data points correspond to D-type objects, green correspond to X-type, and magenta
correspond to C-type classifications. The a7 regional demarcations of taxonomy are shown
as horizontal lines with the D/X dividing line being set to 0, and the X/C line near —0.11
to be half way between the X and C regions. The black diagonal line shows a one-to-one
relationship between a* and a%. The yellow asterisk shows the position of the Sun in prin-
cipal component space, or the equivalent of a flat asteroid spectrum. Only (4709) Ennomos
is blue relative to solar. Note: The taxonomy of the outlier green X-type object (7352) with
a’ above 0 was calculated by Hasselmann et al. (2011) as an XL at a 47% confidence level.
This particular object is of interest as an extremely long rotator with a period of 648 hours
(Stephens et al. 2014b).
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2.5.2 Trends with Inclination

This principal component may now be compared to other physical and orbital parameters
associated with these objects in order to explore potential trends that might explain the
origin and evolution of the swarms. Roig et al. (2008) found a correlation of inclination,
absolute magnitude, and spectral slope among Jupiter Trojans in the SDSS MOC. They
claim that both swarms trend towards redder objects being larger and having higher orbital
inclinations. As all of the objects in this survey are relatively large compared to most of the
objects in the MOC, we examine if this trend holds true for inclination. Figure 2.12 shows
a’ as a function of inclination for both the L4 Greeks presented here and the MOC4 sample.
Only known L4 Jupiter Trojans with quality griz photometric data were used for the MOC4
sample, resulting in 167 objects. Figure 2.13 shows the same, but for the L5 camp and with
232 objects from the MOC4. The Lupton (2005) conversion equations (Equation 2.3 through

Equation 2.6) from the SDSS website® were used to calculate a’..

B=g+0.3130+ (g —1) +0.2271 (2.3)
V =g— 05784+ (g—r)—0.0038 (2.4)
R =r—0.2936+ (r — i) — 0.1439 (2.5)

Shttp://classic.sdss.org/dr4/algorithms/sdssUBVRITransform.html#Lupton2005
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Figure 2.12: Principal component af. (Equation 2.2) plotted for converted SDSS MOC4
L4 Greeks (small black points) as well as the photometric data presented for L4 Greeks in
this work (larger dots with blue error bars) against the orbital inclination in degrees for
these objects. Unlike the L5 data shown in Figure 2.13, high inclination, less-red X-type and
C-type objects with a} less than 0 are not seen in the Greek camp.

I=i—0.3780+ (i — 2) — 0.3974 (2.6)
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Figure 2.13: Principal component af. (Equation 2.2) plotted for converted SDSS MOC4
L5 Trojans (small black points) as well as the photometric data presented for L5 Trojans in
this work (larger dots with red error bars) against the orbital inclination in degrees for these
objects. Fewer high inclination, less-red X-type and C-type objects with aj. less than 0 are
seen among the MOC4 objects than among the Trojans observed here.

The lack of high inclination, less-red” objects apparent in the MOC4 sample appears to
be present in our L4 Greek population, but is not obvious in the larger L5 objects used for

this survey. As can be seen from Figure 2.14, when the two camps are combined less-red

"Here we use the terms “less-red” in the style of Emery et al. (2011) to describe the bluer X- and C-type
Jupiter Trojans as none of these objects are truly blue and are indeed quite red compared to many other
Solar System objects.
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X- and C-type objects seem to be lacking in our sample at all inclinations compared to
the MOC4 sample (SDSS Trojans in Figure 2.14). A cutoff of 11° was used to separate high
inclination objects from low inclination objects because this value cuts the population roughly
in half. The two-sample Kolmogorov-Smirnov test (KS test) gives the probability that two
samples could be randomly drawn from the same parent sample by evaluating the maximum
difference between the cumulative distribution functions of each sample and accounting for
sample size. This statistic indicates a small probability® (5.4%) that the high and low
inclination populations in the L5 MOC4 data are drawn from the same underlying color
distribution. We find an even smaller probability for the L4 MOC4 data. However, the same
statistical test finds no such distinction for the sample provided in this work (labelled “Large
Trojans” in Figure 2.14). Not only is no statistical difference found between the high and low
inclination Large Trojan populations, but also there is not any significant difference between
the high inclination Large Trojans and the equivalent population from the MOC4 sample.
However, when both camps were combined, there is a significant difference (6.2% probability
of being drawn from like samples) between the profiles of the MOC4 and Large Trojans at
inclinations below 11°. In other words, we show no significant difference between the entire
sample of Large Trojans presented here and the high inclination population of somewhat
smaller objects in MOC4, but we do see a significant probability that this population of
large objects is distinct from the low inclination objects found in MOC4. This might imply

two different populations, one that is very red, at high inclinations, and containing most of

8The two sample KS test results in a P value representative of the similarity between the two samples.
By convention P values less than 0.05 are considered “significant”, but there is no quantitative reason for
this convention. Since high numbers (here considered to be significantly larger than 5%) are nondiagnostic,
we only report P values less than 10%.



52

the largest objects in the camps, as well as a second, less-red population of smaller objects
that is less scattered at low inclinations.

Both Roig et al. (2008) and Wong et al. (2014) tentatively hypothesize that the redder
D-types that dominate the higher inclinations in the MOC4 sample are older and therefore
less likely to have experienced collisions than the more recently resurfaced or disrupted less-
red, X- and C-type objects in the lower inclination Trojan orbits. Szabo et al. (2007) suggest
that a dynamical effect could increase weathering effects on the higher inclination objects.
The similar color distributions for large high and low inclination Trojans from both camps
shown here could support these hypotheses if a lack of disruptive events is what allows these
large objects to survive and redden over time. This hypothesis is also supported by fact that

more large Jupiter Trojans exist at high inclinations.
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Figure 2.14: Histograms of the SDSS MOC4 Jupiter Trojans (SDSS Trojans) and the larger
objects from both camps observed for this work (Large Trojans), both shown in Figure 2.12
and Figure 2.13, divided into roughly equal populations at an inclination of 11°. The SDSS
population (black, dashed line) is clearly differentiated, with low inclination objects in the
lower frame having a significantly disparate color distribution to that of high inclination
objects (upper frame). The low and high inclination Large Trojan populations (solid, red
line) are statistically indistinguishable from each other, but we find only a 6.2% probability
that the low inclination Large Trojan and SDSS populations are sourced from the same
parent population.



o4

2.5.3 Comparing Camps

Even though the Jupiter Trojans in the 1.4 and L5 Lagrangian points share an orbit, the two
camps are perpetually separated by about nine AU. This means that very little communi-
cation is possible between camps; therefore, their evolution has been independent from each
other since the populations were captured in their current orbits. Signatures of major events
could shape the composition or orbital evolution of one camp and leave the other unaffected.
Alternatively, differences between the camps could be seen if multiple parent populations
were present for the original sourcing of the camps, or if some preferential bias was present
during their capture.

However, if such a bias or evolutionary event occurred it left behind no significant sig-
nature in the color profiles for the largest Jupiter Trojans (see Figure 2.15). When the
relative population sizes are taken into account, we find no significant differences between
the taxonomic demographics of the two Trojan camps. We find the largest L4 Greeks to
be photometrically consistent with a composition of 87% D types, 10% X types, and 3% C
type objects. The largest L5 Trojans are 81% D types, 14% X types, and 5% C types. Ad-
ditionally, we have listed objects between the overlapping regions of the D and X taxonomic
regions as DX on Table 2.3 and Table 2.4. These intermediate objects make up about 7% of
each population. A KS test results in no significant difference (P = 47%) between the color
profiles of the two camps. With large objects, it is likely that we are probing the original
source populations of the two Trojan camps more strongly than evolutionary effects such
as collisions or migrations that might change the compositional landscape of these popula-

tions. Therefore, from this information we can conclude that it is unlikely that there was any
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Figure 2.15: Histogram showing the number of objects from this sample according to a’.
principal component. This figure shows the color profile for both Jupiter Trojan camps.
The L4 Greeks are plotted above the L5 Trojans making the Greek line the total number in
that bin for both camps, and the difference between lines the number of Greeks in that bin.
Redder objects are towards the right of the plot, and less-red objects are located to the left.
Black lines have been placed at 0 and —0.11 to separate the region where one could expect
to find D like objects from those regions populated by X like and C like objects as described
in Subsection 2.5.1.

compositional bias present during the sourcing of the two independent camps. This should
be true regardless of the dynamical effects that have resulted in the disparity in numbers

between the groups, as the color profiles are indistinguishable.

2.6 Discussion
Using the a% principal component described in the previous section, we have classified 109
of the Jupiter Trojans presented in this sample. Of these large objects, we have found 88 to

have aj. consistent with D-type asteroids, 9 consistent with X-type objects, and 4 consistent
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with C-types. We found 8 objects to be indeterminate between the D and X regions. This
leads to a population that is 81% D-type, 8% X-type, 4% C-type, and 7% intermediate
DX-type objects. This fractional distribution is similar to the distribution presented by
DeMeo & Carry (2013) with a slightly larger ratio of D’s to X's.

Emery et al. (2011) and Wong et al. (2014) have shown a lopsided bimodality within the
Greek and Trojan populations that they have designated as Red (R) and Less-Red (LR)
groups. These two groups have a ratio of about 2.2 to 1 in favor of the R group for objects
with H < 12.3. When the Wong et al. (2014) sample is limited to include only objects
brighter than H of 10, the ratio is in good agreement with the 4.2 to 1 ratio of red D-
type asteroids to less-red DX, X, and C-type asteroids we derive here. The demographics
represented by the Bus-DeMeo taxonomies for the Main Belt can now be extended into the
Greek and Trojan clouds, and it is possible that the bimodality of the Centaur and KBO
populations (Peixinho et al. 2012) might have a presence of some form as far in as Jupiter’s

orbit (see Chapter 5).
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Search for Surface Variation on Individual Jupiter Trojans

3.1 Introduction
As discussed in Chapter 5, space weathering and compositional differences are commonly
assumed to be the reasons that different asteroids are different colors. Even among Jupiter
Trojans, V' — I color can vary by as much as 0.45 magnitudes between different objects (see
Section 2.4), and these objects experience a very small range of environmental conditions
compared to that experienced by other dynamical groups. With such a large variation in
color within the Jupiter Trojan populations as a whole, we examine several large Trojans for
color inhomogeneities across their surfaces in an effort to determine both the reliability of
instantaneous color observations such as those discussed in Chapter 2 and to search for clues
as to the source of variety between objects. This is the first study of its kind for Jupiter Tro-
jans, although (4709) Ennomos has garnered much attention for its relatively high albedo of
about 0.15 reported by Fernandez et al. (2003) (compared to the significantly lower albedo
of about 0.07 Grav et al. (2011) found to be typical for large Jupiter Trojans). Addition-
ally, Shevchenko et al. (2014) found a more typical Jupiter Trojan albedo for Ennomos of
0.052, suggesting a possible bright spot on its surface. Near-Infrared spectroscopy presented
by Emery et al. (2016) does show evidence of spectral slope variations with rotation for
Ennomos.

If the majority of the differences among Trojan colors is caused by the relative age of
an object’s surface and subsequent space weathering, then recent non-disruptive collisional
events could be visible in the form of a relative deviation of V' — I color from the mean as the

asteroid rotates and these surface features come into and out of view. The strength of this
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deviation would depend on the novelty of the event and the strength of the weathering effect,
as well as the size of the feature relative to the the visible projected area of the asteroid. For
instance, a hypothetical crater that covered 10% of an asteroid’s surface and differed from
the predominate surface color by ~ 0.3 mag could have a signature of about 0.03 magnitudes
deviation from the rest of the color curve. The width of the deviation is dependent on the
size of the feature, its latitude, and the current aspect angle of the body. However, due to
the low signal to noise ratio of these detections, several epochs of data spanning a variety
of aspect angles are necessary to truly map any complex surface features on an unresolved
asteroid. We attempt this with (1173) Anchises in Subsection 4.3.4, but in this chapter we

present more limited findings for partial light curves of twelve different Jupiter Trojans.

3.2 Observations and Reductions

Observations were primarily taken on non-photometric or partially photometric nights during
observing runs at CTIO and Lowell Observatory that were otherwise largely dedicated to the
Jupiter Trojan photometry discussed in Chapter 2. The specific observing runs are discussed
in some detail in Section 4.2 and the three telescopes used for these observations are detailed
in Table 2.1.

For these observations, frames were taken in alternating Johnson-Kron-Cousins V and [
filters. For some datasets intermittent R frames were taken as well. These latter frames were
primarily used to check the general shape of the light curve in case there were any errors
present in one of the two primary filters. Taking the V' and I images nearly simultaneously
allows us to calculate the V' — I color of the target over time as the projected aspect and

surface of the body rotate into and out of view.
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The data were bias and flat corrected using standard IRAF reduction procedures and
fringe removal was applied to I frames taken at the CTIO 1.0m and Lowell 42in as needed.
Once processed, the frames were split according to filter and run through the MPO Canopus
software (Bdw Publishing). This software was used to track the object through the fields
and to select five comparison stars with which the brightness variation of the asteroid was
determined. The relative magnitude of the target in each filter was then output and used
for further analysis. Details about individual objects and observations are given in Table 3.1
while a full list of observed and calculated values for each target at each epoch can be found

in Section C.

3.3 Analysis

3.3.1 Light Curves

Once the data were processed and reduced, a light curve was created for each filter. Due
to the non-photometric nature of most nights, these light curves were uncalibrated to any
absolute value and represent only the relative change in brightness for the object over the
period of observation. The light curves were then phased to an appropriate rotational period
as given in the literature, usually the asteroid Lightcurve Database (LCDB, Harris et al.
2012). In some cases enough of the phase was observed to calculate a minimum amplitude
during the observed epoch, while for several epochs, either insufficient coverage was achieved
or no change was observed. For two objects, (4833) Meges and (5144) Achates, we observed
the entire rotation phase within a single apparition. Where possible, the amplitudes for these
observations were calculated by subtracting the average of the two minima from that of the

two maxima so as to mitigate some of the discrepancy between the actual asteroid shape
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and that of a tri-axial ellipsoid. Unfortunately, this is not a universally used method, as
many authors publish amplitudes that are simply the difference between observed maximum
and minimum values, and some do not explicitly state how their values are calculated. This
lack of a standard method means that without examining the published light curves directly,
published amplitudes cannot necessarily be directly compared. In general, the amplitudes
given here will be equal to or less than the amplitudes that would have been calculated for
the same object at the same epoch by other authors. All of these calculated values are given
in Table 3.1. Amplitudes, even lower limits, of an asteroid at different epochs can be used
to calculate the pole orientation and shape of the object. For most of the objects listed here
we have either too little of the full rotation at each epoch, or too little orbital coverage, to
perform these calculations with any certainty. For a much more in-depth discussion of this
process as applied to (1173) Anchises, see Section 4.3.

Plots of these color light curve data are given in Section 3.4. For each object, the relative
magnitude (of both brightness and color) about the mean for that apparition is given, with
apparitions on different dates denoted by different symbols. The symbol color denotes the
filter in which the observation was made, and a gray line is shown at the mean value for that
apparition. If an epoch is shifted in magnitude it will be noted in the caption. In many cases
a fourth order Fourier fit is applied to all or a portion of the data. This trend line is plotted
in black and is meant primarily to lead the eye, rather than suggest an actual shape for the
light curve. In each Figure, the relative magnitude is plotted such that brighter values are
on top and fainter values are below, while the V' — I color curve is plotted such that redder

values are towards the top and bluer values are towards the bottom.
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3.3.2 Color Curves

The color curve for each object is created by interpolating the I magnitudes to the light
corrected times of the V filter observations. This method accounts for the changing slope of
the I light curve in order to simulate truly simultaneous (rather than “nearly simultaneous”)
observations in each filter. The error for each interpolated I datum is then calculated based
on the errors of I data that were used in the interpolation. Once this is accomplished, the
new I values are subtracted from the V' values and a color curve is produced for the same
phased time as the original light curve. We then examine each of these color curves for
variation and scatter to determine which objects might be of interest for future examination.

A second plot is then created for each object to examine any possible color variation.
These too can be found in Section 3.4. We created a toy model of a circular spot on a
spherical, rotating object in order to create a first order approximation of the strength and
duration of the signature produced by a colored surface feature. For this model, the color
difference between the feature and surrounding material was assumed to be a factor of two.
This corresponds well with the range of V' — I colors seen in the Trojan camps (see 2.3(a) and
2.4(a)). Furthermore changes to the model due to changing the relative color of the feature
could be replicated by changing the size of the feature, and was therefore a degenerate
variable. Keeping this value constant, the important unknown variables for this model are
the aspect angle of the object, the latitude of the feature, and the size of the feature. Varying
these parameters changes the width and strength of of the model signature. This model is
then fit to any variations seen in the color curve for each object. For this model we assume

that the base material of the object is either bluer or redder than any features by a factor
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of two, and set the zero point for the color curve to the best fit to the flattest part of the
curve at either the top or bottom of the V' — I color curve. Then, the shapes of any features
are compared to that provided by the model discussed above, and the best-fit orientation
(representing either blue or red features) is used. For each object presented here, features
were better fit when the base material was redder and the surface features were bluer.

To calculate the probability of a variation in color representing a real feature on the
surface of an object rather than photometric error, we first calculate the probability that an
individual data point is consistent with zero. A relative V — I value of zero, in this case,
is consistent with a flat color curve representing no color change over the portion of the
rotation period examined. The probability that an individual datum is consistent with a
value of zero is determined by the 1o error calculated for a particular observation and plotted
as error bars in the appropriate Figures. This probability is plotted for each observation for
each object in Section 3.4. In cases where features are suspected, the net probability that all
of the data points with the phase space of the feature are consistent with zero is calculated
and then normalized to form a confidence level® for the feature itself. This confidence level
is given as a percent probability that the entire variation differs from the rest of the color
curve. In general a confidence level above 95% is considered highly likely to represent a real

colored feature or crater on the surface of the object.

! This feature confidence level is determined by calculating the product of individual probabilities of data
points that make up a feature. This value is normalized by setting it to the power of 1/n where n is the
number of data points making up the feature and then adjusted for the average error of the entire light curve
segment.
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3.4 Results for Individual Objects
The following sections describe results for 12 Jupiter Trojans observed in the V' and [ filters,

ordered by identification number.

(884) Priamus

Priamus was observed about every three minutes for three hours and fifteen minutes on
November 16th, 2011. This accounts for roughly half of the rotational phase. The period of
Priamus has been well determined and is listed as 6.8605 hours in the asteroid Lightcurve
Database (LCDB, Harris et al. 2012). This is the period to which we phased the data in
Figure 3.1. The object was also observed by Mottola et al. (2011), French et al. (2011b),
Shevchenko et al. (2012a), Stephens et al. (2015), and Stephens et al. (2016¢). All of these
observations found nearly identical rotation periods and amplitudes ranging from 0.24 to
0.40 mag.

None of these sources published any color information, though a mean V' — I color of 0.91
was found by Chatelain et al. (2016), who averaged six individual photometric observations
that had a V' — I range of 0.14 mag. In Figure 3.2 we see a V — I color change of about
0.06 mag from phase 0 to 0.2 as well as between phase 0.2 and 0.35. The shapes of these
features fits our model well and produces a high confidence level for each feature of 96.4%
and 97.0%. Therefore, we consider (884) Priamus to be be a strong candidate for surface
variation, although further observations at varying aspect angles are required to determine
more information about the nature of any features. A full data table can be found in

Table C.1.
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Figure 3.1: Light curve (top) and V' — I color curve (bottom) for (884) Priamus during
November 2011. The second dataset has been shifted by 0.05 mag to better fit the presumed
light curve.
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Figure 3.2: Color curve (top) and Individual Probability curve (bottom) for (884) Priamus
during November 2011. We model two potential features (as described in Subsection 3.3.2)
centered at phase 0.15 and 0.32 with a confidence level of 96.4% and 97.0% respectively. The
dashed line shows a 99% probability that a data point represents color change. The symbols
used in the color curve are the same as those used in Figure 3.1.
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(911) Agamemnon

Agamemnon was observed about once every two minutes for five hours and forty-eight min-
utes on February 24th, 2013. This results in a very densely sampled light curve that covers
most of the object’s rotational phase. The rotation period of Agamemnon has been well
determined, and is listed as 6.592 hours in the LCDB (Harris et al. 2012). This is the period
to which we phased the data in Figure 3.3. The object was also observed by Stephens (2009),
Mottola et al. (2011), French et al. (2012), and Stephens et al. (2014a). All of these obser-
vations found nearly identical rotation periods. Howerver, they did find amplitudes ranging
from 0.04 mag with an uneven single peaked light curve (French et al. 2012) to 0.29 mag
with a much more standard double peaked light curve (Mottola et al. 2011). Our data set
from 2013 much more closely resembles the shape and amplitude of the French et al. (2012)
light curve rather than those observed before or after.

None of these sources published any color information, though we find a mean V — I
color of 0.98 in Table 2.3 where we averaged 2 individual photometric observations that had
a V —1I range of 0.08 mag. We find no sign of color variation in Figure 3.4 that would indicate
an unevenly weathered surface. However, due to the relatively flat nature of Agamemnon’s
light curve at this apparition compared to the amplitude it has been seen to have at other
parts of its orbit, it is very likely that the object has a very high obliquity and we happen to
be looking mostly at the pole during this particular epoch. If this is indeed the case, then
color variation would not be expected, as most of the projected surface stays in view for the
entire rotation and features would not be visible relative to the rest of the surface since they

would never go below the horizon. A full data table can be found in Table C.2.
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Figure 3.3: Light curve (top) and V —I color curve (bottom) for (911) Agamemnon during
February 2013.
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Figure 3.4: Color curve (top) and Individual Probability curve (bottom) for (911) Agamem-
non during February 2013. We found no notable features that might be modelled (as de-
scribed in Subsection 3.3.2). The dashed line shows a 99% probability that a data point
represents color change. The symbols used in the color curve are the same as those used in

Figure 3.3.
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(1143) Odysseus

Odysseus was observed every minute or so for three hours and twenty minutes on October
22nd, 2010. This results in a well-sampled partial light curve covering about 40% of the
object’s rotational phase. The rotation period of Odysseus has been well determined to be
10.111 hours as cited in the LCDB (Harris et al. 2012). This is the period to which we
phased the data in Figure 3.5. Light curves of Odysseus were also gathered by Molnar et al.
(2008), Mottola et al. (2011), Shevchenko et al. (2012a), and Stephens et al. (2014a). All
of these observations found rotation periods that were in good agreement and amplitudes
ranging from 0.15 to 0.22 mag. Many of these sources show a complex light curve that has a
small dip in brightness near the secondary maximum. Though our partial coverage does not
fully capture either maxima, it is likely that part of this dip is visible near a phase of 0.38.

None of these sources published any color information, though we find a mean V' — I color
of 0.86 in Table 2.3 where we averaged six individual photometric observations that had a
V — I range of 0.11 mag. We find two potential features in Figure 3.6 that might indicate
an unevenly weathered surface. The first feature from phase 0.05 to 0.2 shows a net color
change of 0.07 magnitudes and has a confidence level of 93.4%, while the second feature from
phase 0.25 to 0.4 has about the same color change and a confidence level of 93.5%. A full

data table can be found in Table C.3.
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Figure 3.5: Light curve (top) and V' — I color curve (bottom) for (1143) Odysseus during
October 2010.
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Color curve (top) and Individual Probability curve (bottom) for (1143)

We model two potential features (as described in

Subsection 3.3.2) centered at phase 0.11 and 0.31 with a confidence level of 93.4% and 93.5%
respectively. The dashed line shows a 99% probability that a data point represents color
change. The symbols used in the color curve are the same as those used in Figure 3.5.
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(2207) Antenor

Antenor was observed every 3 minutes for three hours on November 17th, 2011 and four
hours and fifty minutes on September 29th, 2012. Combining these two epochs results in
nearly total phase coverage if we assume the rotation period to be precisely the 7.965 hours
listed in the the LCDB (Harris et al. 2012). Even though this is the period to which we
phased the data in Figure 3.7, the time between the two epochs means that without a more
precise period, the phase of each apparition could shift by as much as 0.6 relative to the
other, making this placement effectively arbitrary. This is caused by the accumulation of
at least an 18 second uncertainty in the object’s rotational period over many thousands
of rotations between epochs. Light curves of Antenor were also gathered by Gonano et al.
(1991), Mottola et al. (2011), and Stephens et al. (2016b). All of these observations found
rotation periods in relatively good agreement, but with a deviation between them of about
four minutes. They also found amplitudes ranging from 0.09 on a nearly featureless light
curve (Stephens et al. 2016b) to 0.19 mag with a complex light curve showing many sharp
peaks and valleys much more closely resembling our 2012 data (Mottola et al. 2011). This
particular progression from complex features and large amplitude in 1989 to featureless and
small amplitudes in 2016 implies a large axial tilt, and a near equatorial viewing geometry
in both 1989 and 2012 (two dates almost exactly two orbits apart).

None of these sources published any color information, though we find a mean V' — I color
of 0.92 in Chatelain et al. (2016) where we averaged four individual photometric observations
that had a V' — I range of 0.25 mag. Even though the likely equatorial viewing geometry is

ideal for spotting surface inhomogeneities, the potential features modelled in Figure 3.8 are
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Figure 3.7: Light curve (top) and V — I color curve (bottom) for (2207) Antenor during
November 2011 and September 2012. The 2011 data have been shifted by 0.5 mag to provide
a better visual fit to the 2012 light curve.

relatively weak and at lower confidence levels of 78.4% and 88.0%. However, both features
appear quite broad, which is consistent with an aspect angle of nearly 90° that would result

in the expected viewing geometry. A full data table can be found in Table C.4.
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Figure 3.8: Color curve (top) and Individual Probability curve (bottom) for (2207) Antenor
during November 2011 and September 2012. We model two potential features (as described
in Subsection 3.3.2) centered at phase 0.0 and 0.65 with a confidence level of 78.4% and
88.0% respectively. However, due to the time between these two epochs and the lack of a
highly precise period, these features could possibly be the same feature, partially sampled
on two different dates. The dashed line shows a 99% probability that a data point represents
color change. The symbols used in the color curve are the same as those used in Figure 3.7.

(2357) Phereclos

Phereclos was observed once every 4.5 minutes for about three hours on September 8th,
2011; every three minutes for five and a half hours on October 12th, 2012; and every ten
minutes for about eight and a half hours on November 8th, 2013. Though we phased the

data to the 14.394 hour rotation period given by the LCDB (Harris et al. 2012), due to
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the long periods of time between epochs, the relative phases of each dataset are effectively
arbitrary. Figure 3.9 displays the data from the three epochs offset from one another so as
to avoid confusion. For the partial light curves we have acquired, we show a large change in
amplitude between apparitions. Something similar can be seen in the light curves of Phereclos
gathered by Mottola et al. (2011) and Stephens et al. (2016b). Both of these sources found
similar rotation periods, but the light curve shape and amplitude varied significantly between
observations. Mottola et al. (2011) observed Phereclos at two different epochs and saw an
increase in amplitude from 0.06 to 0.09 mag between their observations in 1994 and 2010,
while Stephens et al. (2016b) found an amplitude of 0.18 in 2015. Considering that we find
a minimum amplitude of 0.16 in 2013, it is likely that this apparition was coincidentally
near an equatorial projection, and the other two datasets simply did not cover enough of the
phase to provide accurate amplitude estimates.

Chatelain et al. (2016) found a mean V' — I color of 0.96, which is shown in Table 2.4.
This value was the weighted average of seven individual photometric observations that had
a V — I range of 0.1 mag. Unfortunately, only V and R filter data were usable for the 2013
epoch, meaning that a V' — [ color curve was not available for this date. The data were
included regardless, due to the amplitude information they contained. For the two prior
datasets, we see no variation in Figure 3.10 that is statistically different from the random

scatter of the data. A full data table can be found in Table C.5.
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Figure 3.9: Light curve (top) and V' — I color curve (bottom) for (2357) Phereclos during
September 2011, October 2012, and November 2013. Due to the large variation in light curve
shape and amplitude between epochs, individual datasets have been offset from one another.
The 2013 data are in V' and R only, so no V — I points are shown.
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Figure 3.10: Color curve (top) and Individual Probability curve (bottom) for (2357) Phere-
clos during September 2011 and October 2012. We found no notable features that might be
modelled (as described in Subsection 3.3.2). The dashed line shows a 99% probability that
a data point represents color change. The symbols used in the color curve are the same as
those used in Figure 3.9.
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(2920) Automedon

Automedon was observed once a minute for one and a half hours each night on December
13th, 2011 and February 23rd, 2013; and once every two minutes for another thirty minutes
on February 24th, 2013. These data were phased to a 10.212 hour rotation period (LCDB,
Harris et al. 2012) in Figure 3.11. The two 2013 datasets will be properly placed with respect
to each other in phase space, but the relative position between these two datsets and the
2011 data is effectively arbitrary due to the accumulation of uncertainty in the period over
two years. The data have been offset from one another so as to avoid confusion. We have
too little phase coverage to approximate any kind of useful amplitude, but Molnar et al.
(2008) and Mottola et al. (2011) have obtained light curves for Automedon. Both of these
sources found similar rotation periods and fairly standard double-peaked light curves. They
observed amplitudes of 0.17 and 0.12 mag respectively. Though we do see some slope to
the 2011 data, it is impossible to place this piece of the light curve into context without a
significantly more refined and precise estimate of the period.

We show a mean V' —1I color of 0.95 in Table 2.3 calculated from six individual photometric
observations with a V' — I range of 0.05 mag. During the 2011 data (at a phase of about 0.15
in Figure 3.12) there is a small feature that could potentially be attributed to a surface color
variation. However, as this candidate feature has a relatively low confidence level of 84.0%,
and is uncorroborated by any overlapping data from a different night, it would require more
observations to determine if it is real. Additionally, these observations would be difficult to
plan due to the limited amplitude knowledge for this particular object. A full data table can

be found in Table C.6.
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Figure 3.11: Light curve (top) and V' — I color curve (bottom) for (2920) Automedon
during December 2011 and February 2013. The data have been offset to avoid confusion.
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Figure 3.12: Color curve (top) and Individual Probability curve (bottom) for (2920) Au-
tomedon during December 2011 and February 2013. We model one potential feature (as
described in Subsection 3.3.2) centered at phase 0.16 with a confidence level of 84.0%. The
dashed line shows a 99% probability that a data point represents color change. The symbols
used in the color curve are the same as those used in Figure 3.11.
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(3317) Paris

Paris was observed every two minutes for about three hours on June 27th, 2011 and about
two hours on August 9th, 2011. In Figure 3.13 these data were phased to a rotation period
of 7.048 hours as listed in the LCDB (Harris et al. 2012). The 43 days between the two
datasets only correspond to about 150 rotations for Paris. The relatively small amount
of time between epochs translates into a more reliable phasing of the two datasets, which
should not be off by more than 0.1 phase from their given positions. Additionally, because
Paris will not have travelled far along its orbit during the elapsed time, the overall shape
and amplitude of the light curve should be relatively consistent between the two apparitions.
Behrend (2009), Mottola et al. (2011), and Stephens et al. (2016b) each provide light curves
for Paris. They found very similar rotation periods and a complex, multi-peaked lightcurve
when at low amplitude (0.08 mag) replaced by an off-center double-peaked light curve at
high amplitude (0.11). Figure 3.13 shows a still fairly complex light curve with a minimum
amplitude higher than those seen in the literature (0.13).

Chatelain et al. (2016) provide the mean V' — I color of 0.95 shown in Table 2.4 that
is calculated using 13 individual photometric observations with a V' — I range of 0.21 mag.
Variation in Figure 3.14 is small, and seems well within the expected noise. No single feature
is significant enough to model, and the surface seems markedly consistent throughout the

rotation. A full data table can be found in Table C.7.
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Figure 3.13: Light curve (top) and V — I color curve (bottom) for (3317) Paris during
June and August 2011.
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Figure 3.14: Color curve (top) and Individual Probability curve (bottom) for (3317) Paris
during June and August 2011. We found no notable features that might be modelled (as
described in Subsection 3.3.2). The dashed line shows a 99% probability that a data point
represents color change. The symbols used in the color curve are the same as those used in
Figure 3.13.
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(3451) Mentor

Mentor was observed every 1.5 minutes for about five hours on August 14th, 2011; two and
a half hours on September 30th, 2012; and another hour the night of October 3rd, 2012.
These observations are plotted in Figure 3.15, where they are phased to the 7.730 hour ro-
tation period provided by the LCDB (Harris et al. 2012). With over a year between the two
observation epochs of 2011 and 2012, the phase of the 2011 dataset is more or less arbitrary
relative to the 2012 datasets. The 2012 data were offset from the 2011 data to prevent confu-
sion. Mentor’s rotational properties have been well studied. Behrend (2009), Sauppe et al.
(2007), Duffard et al. (2008), Mottola et al. (2011), French et al. (2011a), Stephens et al.
(2014b), and Stephens et al. (2016b) have all collected light curves for Mentor. They found
similar rotation periods and a well behaved two-peaked light curve. In amplitude, however,
these sources are divided between low amplitudes (below 0.2 mag) and very high amplitudes
around 0.6 mag. This disparity suggests that Mentor is a highly elongated body with a
large obliquity. Our 2011 data clearly fall near an equatorial viewing geometry similar to
that seen by Behrend (2009), Sauppe et al. (2007) and, and Duffard et al. (2008). The 2012
epoch does not have enough phase coverage to reasonably determine an amplitude, but based
on the 2011 epoch and the amplitudes in the literature, we can assume it would not have
been above 0.4 mag.

Chatelain et al. (2016) calculate 0.78 mag for the mean V' —1I color of Mentor. This is also
shown in Table 2.4, and the value is calculated using six individual photometric observations
with a total V' — I range of 0.08 mag. There is a signature in Figure 3.16 for the 2011 data

around phase 0.4 that has a confidence level of 95.9%. There is also a fairly strong signature
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Figure 3.15: Light curve (top) and V — I color curve (bottom) for (3451) Mentor during
August 2011 as well as September and October of 2012. The 2012 datasets have been offset
to avoid confusion.

in the 2011 data at a phase of 0.8, but we did not get enough data to fit a model. It is also
possible that there is a corresponding signature in the September 2012 data at this same
phase, but the feature is so small that it would need to be at a much higher obliquity to be

the same feature a year later. A full data table can be found in Table C.8.
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Figure 3.16: Color curve (top) and Individual Probability curve (bottom) for (3451) Mentor
during August 2011 as well as September and October of 2012. We model one potential
feature (as described in Subsection 3.3.2) in the 2011 data, centered at phase 0.46 with a
confidence level of 95.9%. We see no features in either of the 2012 data sets, but we see
another high confidence color change in the 2011 data around a phase of 0.8. More data
would be needed to reasonably model this feature. The dashed line shows a 99% probability
that a data point represents color change. The symbols used in the color curve are the same
as those used in Figure 3.15.

(3793) Leonteus

Leonteus was observed for just thirty minutes on November 15th, 2011 but was followed up
with an observation each minute for nearly two hours of observations on December 11th,

2011 and once every four minutes for another four and a half hours on February 23rd, 2013.
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These observations are plotted in Figure 3.17, phased to a 5.622 hour rotation period from
the LCDB (Harris et al. 2012). With only a month between the two 2011 datasets, the
uncertainty in the period is unlikely to change their phase relative to each other. The 2013
data, however, has no phase relationship with the other two datasets due to the several years
between epochs. For this reason, the 2013 data were offset from the 2011 data to prevent
confusion. Additionally, a sizeable (two hour) gap is present in the middle of the 2013 data;
however, due to the short period, the two halves of the night have phased together. Light
curves for Leonteus have previously been produced by Mottola et al. (2011), Stephens et al.
(2016a), and Stephens et al. (2016¢). These sources found similar rotation periods once
the high obliquity was taken into account. For many of these observations Leonteus pre-
sented a nearly pole-on view with a nearly featureless light curve and an amplitude as low
as 0.06 mag. Intermediate amplitudes of 0.11 mag were seen by Stephens et al. (2016a) and
Stephens et al. (2016¢), while a typical double-peaked light curve with a 0.21 mag ampli-
tude was observed by Mottola et al. (2011) in 1994. Our data are likely taken closer to an
equatorial apparition, as we show an amplitude of at least 0.38 mag, which is significantly
larger than any amplitude reported to date. We believe Leonteus is a moderately elongated
object with a pole orientation of nearly 90°.

We calculate a mean V' — I color for Leonteus of 0.78 mag using three individual photo-
metric observations with a total V' — I range of 0.01 mag (Table 2.3). All variation in color
in Figure 3.18 appears to be well within the general scatter and smaller than the average

error. A full data table can be found in Table C.9.
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Figure 3.17: Light curve (top) and V' — I color curve (bottom) for (3793) Leonteus during
2011 and 2013. Due to the large variation in light curve shape and amplitude, individual

datasets have been offset from one

another.
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Figure 3.18: Color curve (top) and Individual Probability curve (bottom) for (3793) Leon-
teus during 2011 and 2013. We found no notable features that might be modelled (as
described in Subsection 3.3.2). The dashed line shows a 99% probability that a data point
represents color change. The symbols used in the color curve are the same as those used in
Figure 3.17.
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(4709) Ennomos

Ennomos was observed every two minutes for two and a half hours on September 5th, 2011.
It was also observed in November 2013 for two and a half hours on the both 7th and 8th.
The resulting light curve is plotted in Figure 3.19, phased to the 12.269 hour best fit rotation
period found by R. Stephens (personal communication, June 5, 2017). With only a fraction
of the full rotation period covered, it is difficult to get an accurate sense of global proper-
ties, such as light curve amplitude. However, Mottola et al. (2011), Stephens et al. (2016a),
and Stephens et al. (2016b) did manage full phase coverage for Ennomos. The sources that
calculated rotation periods largely agreed in their findings, and showed a light curve with
a very large disparity between the two maxima with consistent amplitudes between obser-
vations ranging from 0.45 to 0.46. Unfortunately, without more data we cannot add useful
amplitude information to this earlier collection.

A mean V —1 color for Ennomos is reported by Chatelain et al. (2016) to be 0.69 mag and
is calculated using seven individual photometric observations with a total V' — I range of 0.09
mag (Table 2.4). Importantly, it has been hypothesized by Shevchenko et al. (2012b) that
the significant difference between the maxima is the result of a bright albedo spot covering
up to 30% of the surface of Ennomos. Such a large change in albedo should be visible as
a change in color from the bright maximum to the fainter maximum. This albedo change
may be visible in our data during the 2013 apparition from phase 0.1 to 0.3 in Figure 3.20.
The steep slope of the V' data appears to capture part of the large peak, and shows a sharp
contrast to the behavior of the I data over the same period. This results in a large swing

in relative color for both nights. This likely shows the results of a significant feature on the
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Figure 3.19: Light curve (top) and V' — I color curve (bottom) for (4709) Ennomos during
September 2011 and November 2013. The 2013 data are only one night apart, they have
been shifted in Relative Magnitude so that the nights better align.

surface of Ennomos that corresponds to the asteroid’s primary peak. A color curve over the
full rotation period is needed to model this feature more precisely. A full data table can be

found in Table C.10.
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Figure 3.20: Color curve (top) and Individual Probability curve (bottom) for (4709) En-
nomos during September 2011 and November 2013. We found indications of very large
color change in the 2013 data near phase 0.2, but no signs of variation in the 2011 data.
There is not enough data to reasonably model this change as a feature (as described in
Subsection 3.3.2), but the confidence level in this feature is effectively 100%. Additionally, it
is likely that the color change shown between the two nights in 2013 is cumulative, making
the net variation even greater. The dashed line shows a 99% probability that a data point
represents color change. The symbols used in the color curve are the same as those used in
Figure 3.19. Note: The software used to calculate the probability that an individual data
point is consistent with 0 (no net change) fails beyond 1077,

(4833) Meges

Meges was observed once every ten minutes for about five hours each night on February 8th,

9th, 16th, and 17th, 2015. These four epochs create a full composite light curve that was
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phased to the 14.250 hour rotation period as is reported in the LCDB (Harris et al. 2012).
The full light curve and resulting color curve are shown in Figure 3.21. Due to the proximity
of the nights that went into this composite, the uncertainty in the period will not have a large
effect on the phase of the individual epochs. Light curves of Meges were also gathered by
Mottola et al. (2011) and Stephens et al. (2016¢). Both of these observations found similar
rotation periods and light curve shapes. The amplitudes found in these sources, ranging
from 0.13 to 0.27, encompass the 0.17 amplitude we see.

Neither of these sources published any color information, though we provide a mean V' —1
color of 0.94 in Table 2.3 which was averaged from two individual photometric observations
that had a V' — I range of 0.04 mag. With over twenty hours of coverage of a 14.25 hour
rotation period we have significant overlap in what turns out to be some very interesting parts
of the light curve. Specifically, in Figure 3.22, we see what appear to be periodic features
in the color curve that are present with similar slopes on multiple nights. This behavior
is consistent with a large, fresh crater that takes up a significant portion of the projected
surface area of the asteroid. We model features that together cover most longitudes of Meges
and have confidence levels of 99.9%, 99.9%, and 95.3%. A full data table can be found in

Table C.11.
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Figure 3.22: Color curve (top) and Individual Probability curve (bottom) for (4833) Meges
during February 2015. We model three potential features (as described in Subsection 3.3.2)
centered at phase 0.15, 0.5, and 0.87 with a confidence level of 99.9%, 99.9%, and 95.3%
respectively. The dashed line shows a 99% probability that a data point represents color
change. The symbols used in the color curve are the same as those used in Figure 3.21.
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(5144) Achates

Achates was observed every 2.5 minutes for six hours and ten minutes on June 26th, 2011.
With these observations we manage complete phase coverage for the entire 5.958 hour ro-
tation period reported by the LCDB (Harris et al. 2012). The resulting full light curve is plot-
ted in Figure 3.23. Previously, Molnar et al. (2008), Mottola et al. (2011), and Stephens et al.
(2015) published light curves for Achates. They largely agreed on the period and show a
fairly simple double-peaked light curve. Molnar et al. (2008) shows a bit more of the com-
plexity that we see near the secondary minimum. Published amplitudes vary from 0.20 to
0.35 mag, making the observed amplitude of 0.14 presented here the smallest yet seen.

A mean V — I color for Achates of 0.92 mag is reported by Chatelain et al. (2016) us-
ing nine individual photometric observations with a total V' —I range of 0.09 mag (Table 2.4).
There are two large outliers near phase 0.05 and 0.65 in the color curve for Achates (Figure 3.24).
For our analysis, we assume these outliers are artefacts and ignore them when fitting the
models to the rest of the data. Once this is done we see two possible features that dominate
the color curve with confidence levels of a moderate 91.5% and a low 77.9%. A future color
curve when Achates shows a larger light curve amplitude might confirm the existence of

these potential features. A full data table can be found in Table C.12.
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We model two potential features (as described in

Subsection 3.3.2) centered at phase 0.33 and 0.8 with a confidence level of 91.5% and 77.9%
respectively. The dashed line shows a 99% probability that a data point represents color
change. The symbols used in the color curve are the same as those used in Figure 3.23.



100

3.5 Summary

We summarize the color curve study of the twelve objects listed here in Table 3.2. Of these
objects, we find one object, (4833) Meges, with confirmed signs of color variation over its
surfaces that are highly indicative of a surface feature. The fact that the variations seen on
this object are present over multiple nights rules out any statistical or photometric anomalies.
Another object, (4709) Ennomos, shows very strange color behavior that is likely indicative
of a massive surface feature with a highly different color profile to that of the surrounding
material. Two additional objects, (884) Priamus and (3451) Mentor, display the signatures
for surface features at a confidence level over 95%. (1143) Odysseus and (5144) Achates
each show signs of at least one feature with a confidence level of 90% or more, while (2207)
Antenor and (2920) Automedon display even weaker signals. The remaining four targets
show no significant signs of variation, though additional light curves with more complete
coverage at a variety of aspect angles could prove that these objects also possess surface
variation. overall, we conclude that at least seven of the twelve asteroids studied certainly
or almost certainly show color variation over their surface. This implies that cratered or
mottled surfaces are common among Jupiter Trojans, suggesting a more active collisional
history and/or a slower weathering process than previously suspected. Without more data,
the model used for this work is extremely limited in its predictive capabilities, as there
are several variable combinations capable of producing identical shape profiles. Specifically,
we would need a precise measurement of the aspect angle during a given apparition and
observations of the same feature at a variety of epochs. With more data, models could

be developed to more precisely calculate the relative surface areas, latitudes, and colors of
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these large surface features, which in turn would lead us closer to an understanding of the
individual histories of these select objects.

Additionally, this study has important implications for our work in Trojan photometry,
specifically as it applies to Chapter 2. For these twelve objects, we find an average spread
of nearly 0.1 mag in V' — I color over the course of an object’s rotation. This spread may
be caused by either coherent variation as is seen in 4833 Meges (Figure 3.21) or a more
random scattering as seen in 2357 Phereclos (Figure 3.9). This means that a single epoch of
photometry is unreliable for determining an object’s true mean color to a precision better
than 0.05 mag, as the intrinsic variability of the asteroid may be larger than this. This
additional source of error, which is not known a priort, is of the same order of magnitude as
the total median photometric errors calculated for Jupiter Trojans in Table 2.2. However,
this error for a mean color rapidly diminishes with additional data that sample a range of

points along the asteroid’s rotational phase.
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_ 4 _
1173 Anchises: Rotational Properties

4.1 Introduction

We have acquired several epochs of data for (1173) Anchises'. Anchises is a Jupiter Trojan
within the L5 swarm 60° behind Jupiter in its orbit. Anchises has been observed several
times since its discovery by K. Reinmuth in 1930, with previous amplitude? and period
estimates by French (1987) (data we incorporate here) as well as a more recent light curve
by Stephens et al. (2016b) which we do not include. Several thermal observations were made
(Grav et al. 2011; Horner et al. 2012) that have been used for size and albedo estimates.
Well-determined orbital and physical properties of Anchises are given in Table 4.1. Anchises
is of particular interest due to its large photometric amplitude of over 0.6 magnitudes as
well as its similar size and taxonomic type to some of the targets that the Lucy spacecraft is
scheduled to visit in the near future (see Section 6.3). Additionally, French (1987) observed
little or no opposition surge, which is unusual for a P-type asteroid like Anchises. here we
add to these measurements and present a much more precise rotation period, as well as
shape and pole orientation, using data from five epochs spanning over a third of the object’s

orbital path.

!This work was submitted to Icarus in March 2017.

2An asteroid’s amplitude (often written as Am) is roughly the difference in magnitude between the
maximum and minimum brightness of the object over a full rotation period, at a certain aspect angle, once
other effects such as phase and a change in distance have been removed. This change of brightness is typically
independent of observation filter as it is usually dominated by the projected shape of the object rather than
albedo changes.
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Table 4.1: Anchises: Orbital and Physical Properties
(1173) Anchises 1930y

Orbital Elements Physical Properties
Semi-Major axis (a) 5.30 AU Absolute Magnitude (Hy)  8.89 mag
Eccentricity (e) 0.137 Effective Diameter (D) 99.5 km
Inclination (i 6.92° Geometric Albedo (p 0.050
Argument of 40.8° Rotation Period (Prot) 11.60 h
Perihelion (W) ' Phase Slope* (G) 0.15
Longitude of the Q 983.9° Color” (B-V) 0.691 mag
Ascending Node () : (V-I) 0.78 mag
Perihelion Date (t,) 2455922.329 JD (B-R) 1.08 mag
Orbital Period (P) 12.20 years Spectral Type© p

Orbital and physical properties of (1173) Anchises are from the JPL Small-Body Database:
http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1173.

& Assumed value.

b (V' —1I) and (B — R) are mean color values calculated by Chatelain et al. (2016).

¢In Chapter 2 we determine Anchises to be an X-type object, which includes objects classified as
P-type under earlier taxonomic schemes. (See Section 5.1 for a more in-depth discussion of the
history of asteroid taxonomy.)

4.2 Observations and Data Reduction
French (1987) observed Anchises over five nights from July 3rd 1986 through July 10th 1986.
These relatively low phase observations represent a baseline period determination for this
work. These observations were made using the Cerro Tololo (CTIO) 0.9m telescope. French
(1987) found a period of 11.6095 4+ 0.0036 h and an amplitude (Am) of about 0.57 mag.
From 2011 to 2015, four epochs of light curve observations of Anchises were made. Details
of these observations, as well as the 1986 observations made by French (1987) are summarized
in Table 4.2. Our first observations were obtained on a single night on August 8th 2011 on
the CTIO/Yale 1.0m telescope. Data were taken in both the V' and I filters with the purpose
of searching for signs of color variation over a rotation. We found a rotation period consistent
with that found by French (1987) and a Am of about 0.45 mag. The October, 2012 epoch
consists of data taken over two nights approximately a week apart on September 30th and

October Tth. Observations were made on the CTIO 0.9m telescope in both V and [ filters.
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Anchises was observed again in September, 2013 on the 20th and 25th using the Lowell 31in
robotic telescope. Unfortunately, the [ frames from these observations have a larger than
normal error due to significant amounts of fringing. The Lowell 42in telescope was used for
four nights (the 7th, 8th, 16th, and 17th) of observations in February, 2015. Alternating
images in V' and I were once again taken.

The data from August 2011 through February 2015 were processed using IRAF CCD
reduction procedures described by Jao et al. (2005) and Winters et al. (2011). The bias-
subtracted, flat-fielded images were further reduced using the MPO Canopus software (Bdw
Publishing). This software was used to construct relative photometry of Anchises by remov-
ing airmass and sky variations by means of in-field calibration stars. All of the photometry
was light-travel corrected® and then used for more extensive analysis. These data can be

found in Section D.

3Due to the changing distance between the Earth and the object, the light travel time between the two
is subtracted from the observation times so that the observations correspond to local time at the object and
are independent of the observer’s relative location.
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Epoch | July 1986* Aug. 2011 Oct. 2012 Sept. 2013 Feb. 2015
Telescope | CTIO 0.9m CTIO 1.0m CTIO 0.9m Lowell 31in Lowell 42in
Dates | 03,04,05,10 08 09/30,10/07 20,25 07,08,16,17

Hours Observe 23.72 9 11.25 16.75 18.65

a (°)P 1.196 1.915 4.617 7.247 10.32

g (°)P 289.6 307.8 350.2 37.06 62.48

Ba (°)P 0.703 3.817 8.191 8.016 3.783

r (AU) P 4.667 4.593 4.646 4.913 5.425

A (AU)P 3.655 3.588 3.704 4.084 5.175

Am (mag 0.5305 0.4524 0.1452 0.10 0.29

Am error émag 0.0087 0.0048 0.0064 0.01 0.01

« is the mean phase angle over the observation nights in degrees.

A4 and 4 are the mean Ecliptic Longitude and Latitude respectively of Anchises in a geocentric
reference frame over the course of observations for that epoch.

r is the distance of Anchises from the Sun, while A is the distance of Anchises from Earth.
Am is the amplitude calculated from the best 4th-order Fourier fit to the reduced light curve
data.

2 from French (1987)

b Calculated using JPL HORIZONS system: http://ssd.jpl.nasa.gov/horizons.cgi

4.3 Analysis and Results

A fourth order Fourier series was fit to the light curves (shown in Figure 4.1) output by
Canopus. A fourth order fit was found to provide the best fit to the data without any
unreasonable, artificial wiggles in the light curve, and was also the order used by French
(1987). These fits were used to calculate amplitudes by taking the mean of the two maxima
and subtracting the mean of the two minima. This method minimizes discrepancies between
the true, bulk shape of the asteroid and a smooth ellipsoid model. Amplitude errors were
calculated using a Monte-Carlo simulation that found the range of possible amplitudes at
each epoch when individual data points were varied randomly within a Gaussian distribution
calibrated to their 1o error bars. Results for both the amplitude (Am) and its error (Am
error) are given for each epoch in Table 4.2. As Anchises travels around the Sun, a different

orientation is presented to Earth, resulting in changes in the amplitudes of the observed light
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Figure 4.1: The relative V filter light curves for each epoch shown in Table 4.2 phased to

the best fit period. Note the change in amplitude with time. July 1986 data are from French
(1987).

curves. These changes are shown in Figure 4.2 along with the geocentric, ecliptic longitudinal

position of Anchises.

4.3.1 Rotation Period

In an iterative process, the Fourier fits were used to calculate a sidereal rotation period for
Anchises. Rotation periods at each epoch were individually consistent with the 11.6 hour
period found by French (1987) each with errors ranging from 0.05 to 0.008 hours. They also
showed a strong signal at the half-period of about 5.8 hours. To be compatible with each
other, data from each epoch were corrected for light travel time and adjusted to account
for the changing position of Anchises and Earth. To calculate this rotation period, Fourier
fits were found for each epoch and then phased. The best fit period to all of the data was
then calculated and used for all future fits. When combined, all five epochs cover a nearly
30 year baseline, and have been used to calculate a very precise sidereal rotation period

for Anchises of 11.609067 + 0.000002 hours or 11h36m32.644s + 0.007s. This precision is
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Figure 4.2: A sinusoidal fit for the change of Anchises’ amplitude with geocentric ecliptic
longitude based on the data from five epochs given in Table 4.2. This is a basic, rudimentary
model from which some rough pole and axis information can be extracted. It serves as a
good check for our more complex amplitude-aspect model.

possible because of the slight difference between the two light curve maxima (Figure 4.1) that
allows for a differentiation of otherwise degenerate rotation periods. Error in the rotation
period was calculated using a Monte-Carlo simulation where the individual data points were
varied within a Gaussian distribution with a width equal to the 1o error of the data points.
It should be noted that any short term change in the rotation period over the thirty years
covered by these observations is negligible compared to the several minutes to tens of seconds

error on the periods found for individual light curves.

4.3.2 Pole Position and Axis Ratios

In order to find the pole position and axis ratios, we used the amplitude variation model

described in Magnusson (1986)

(b/c)*cos?th; + sin®t);

Am(y;, a;) = 1'25l09[(b/c)20082w¢ + (b/a)?sin?y;

] + Bac; (4~1)
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where 1); is the aspect angle (the angle between the asteroid’s c-axis and line of sight to
Earth) for observation i, a/b and b/c are axial ratios greater than or equal to 1, 8,4 is the
amplitude phase coefficient described below, and «; is the phase angle of the asteroid at the
time of observation 4.

The aspect angle 1; can be defined for each epoch as

; = 90 — arcsin[sinfg ;sinB, + cosPe.icosPycos( A — Ap)] (4.2)

where A, and 3, are the heliocentric ecliptic longitude and latitude of the pole of Anchises,
and A\g; and Pg; are the ecliptic longitude and latitude for Earth at observation ¢, all in a
reference frame centered at Anchises.

We used a grid search to simultaneously fit the pole position and axial ratios by mini-
mizing the difference between the observed amplitudes and the model for a tri-axial ellipsoid
with axes a = b > c¢. The results of this grid search can be seen in Figure 4.3. There is a
4-fold degeneracy in the pole orientation with this model, but the axis ratios were found to
be consistent for all pole solutions.

When no bounds were placed on the minimization function we found axial ratios of
a/b = 1.62 +0.02 and b/c = 0.91 + 0.1. This is consistent with a b/c value of 1. When a
lower bound of 1 is placed on the b/c ratio, a best fit for a/b of 1.61 is found. This is well
within the error determined by a 10% level above the best fit y2.

We found the pole position to be best fit at ecliptic longitude and latitude (198, —29)
and (18, 29), with 1 sigma errors of about +1.5° in longitude and +5° in latitude. The two

values are mirrors of each other and therefore indistinguishable with the amplitude method.



110

The pole coordinates (198, 6) and (18, —6) are also well fit, but have a best fit x? more than
10% higher than the pole solution given above. It should be noted that Horner et al. (2012)
found that a retrograde rotation was best fit to their infrared (IR) models, perhaps leaving
the solutions with north pole positions at negative latitudes as more probable options, thus
leaving us with a preferred orientation of (198, —29) ecliptic longitude and latitude.

The amplitude phase coefficient 54, a linear correction factor to the amplitude model, was
calculated simultaneously as part of the fit parameters. This value accounts for variation
of the object’s amplitude with solar phase angle* and was found to be best fit at about
0.002 mag/deg. The amplitude phase coefficient found here is similar to values found in
the literature for other objects. For example, Magnusson (1986) found values for this phase
coefficient for 18 main belt objects with results ranging between 0.01 and 0 mag/deg with
an average value of about 0.003 mag/deg.

These well-defined pole orientation and axial ratio results found using this amplitude-
aspect model agree well with the first-order approximations that can be determined from

the simple Am-longitude model shown in Figure 4.2.

48, is a low-phase linear approximation of the non-linear effect that a changing phase angle has on an
object’s photometric amplitude. Phase angle affects the apparent amplitude of an object because the ratio of
the projected surface area of the visible, gibbous portion of the object to the full projected area of the facing
side is not a constant, but instead depends on the size of the full projected area. The concept is explored in
much more detail by Zappala et al. (1990).



111

0.008pm _ 25
z M =
< 163 £ 0.006 7 4 20
2 53 @215
g 1.62 3 2 0.004 o x
T OFf 3510
2 3 b 23
1.61E 2 0.002
Z S w 5
® 0.000 20

080 085 09 095 1.00 1.05 1.10 1.15
Axis Ratio b/c

Py
©
2
®
-
o
[e]
o
14 16 18 20 22 194 196 198 200 202
Pole Longitude (°) Pole Longitude (°)

Figure 4.3: Results of a grid search for parameters in Equation 4.1 for an amplitude model
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best fit value (top right). We find Anchises’ axis ratios a/b and b/c (top left) to be best fit
at 1.62 £ 0.002 and 0.91 £ 0.1 respectively. A preferred phase coefficient of 0.002 mag/deg
is indicated by the top middle plot. Pole longitude and latitude (bottom) were found to be
(198,—29) or (18,29) with errors of +1.5° in longitude and +5° in latitude. The two bottom
frames are clipped to show only the best fit regions, which are reflections of each other (180°
in longitude and about the ecliptic in latitude.)

4.3.3 Density

A minimum density can be found using the axial ratios and rotation period calculated above.
Chandrasekhar (1969) shows the minimum density for a Jacobi ellipsoid composed of a fluid
or a strengthless rubble pile in hydrostatic equilibrium. This is the density Anchises would
have if it were pulled into its current shape due to rotational forces and ultimately represents
a minimum density for a realistic asteroid. Such an object’s angular spin frequency (w) and

its density (p) are related to its shape via the following:

w? @ u
v 0 |, s 4
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where G is the gravitational constant, the axial ratios are expressed as f = b/a and 0 = c/a,

and A = /(1 + u)(8% + u)(02 + u) where u is a variable substitution for ¢*tan®f. Solving
Equation 4.3 with the axial ratios determined above, we find a minimum density of about
0.35 g/cm?. This density is significantly below densities calculated for the only two Jupiter
Trojans with well determined densities of 1.08+£0.33 g/em?® and 2.48010 332 g/cm? for (617) Pa-
troclus (Mueller et al. 2010) and (624) Hektor (Lacerda & Jewitt 2007), respectively. Thus,
as it is unlikely that we are probing the actual density of Anchises, we can assume that this

particular object was not pulled into its elongated shape by rotational forces alone.

4.3.4 Color

Color variation is rarely observed on asteroid surfaces, but we show in Chapter 3 that some
level of variability may be common among Trojans. Additionally, it is known that collisions
can uncover pristine, unweathered material that differs in color from the surrounding, more
weathered surface. Thus, a light curve that shows color variation can be an important
indicator of recent collisional activity.

To estimate the color variation for Anchises we observed the asteroid in alternating V' and
I filters. The I magnitudes were interpolated between the original values to be simultaneous
with the V magnitudes and then subtracted from the V' values to calculate V — I colors for
the entire night of observations (see Table E.1 for results.) This results in color curves for
the majority of the phase for each epoch for which we have data. As seen in Figure 4.4 we
detect a possible reddening of a few percent at the same phase (~ 0.8 in Figure 4.4) in both
the 2011 and 2012 data. The noisy nature of the 2013 I data (due to the fringing mentioned

in Section 4.2) makes detection of such a subtle feature difficult for this epoch. The 2015
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Figure 4.4: Relative V' — I color for each recent epoch, redder values are positive. The gray
bar near phase = 0.8 is the region of interest. Possible variations can be seen in 2011 and
2012, but there is nothing obvious in 2013 and 2015. As can be seen from Figure 4.2, the
viewing geometry is changing over these observations from a nearly equatorial sub-observer
latitude in August 2011 to a nearly pole on orientation in October 2012 and September 2013.
By February 2015, the sub-observer latitude is once again approaching the equatorial zone.
It is surprising then that we do not see any features during this epoch. All data are phased
in the same way as shown in Figure 4.1.

data also show no obvious sign of the feature that was observed in 2011 and 2012, though
the overall scatter of these data is 50% and 100% larger than that of the 2011 and 2012 data,

respectively. This could potentially hide such a small signal.
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4.4 Discussion
We have characterized several physical and rotational properties of 1173 Anchises, summa-

rized as follows:

e We find best fit amplitudes for four new epochs of data from 2011 to 2015. These
amplitudes show a definite change with time, decreasing from 0.45 mag in August
2011 to 0.10 mag in September 2013 and increasing again to 0.29 mag in February
2015. These observations cover about a third of the asteroid’s orbit, meaning that we

have significant coverage of possible aspect angles.

e We calculate a highly precise sidereal rotation period of 11~h36m32.644s + 0.007s by
combining five epochs of light curves over a 30 year baseline. This precision is critical
for putting past and future observations into the appropriate context of Anchises’
highly variable light curve. Without the ability to determine the precise light curve
phase and magnitude, direct comparisons cannot be made between different epochs of

instantaneous photometric data.

e We confirm that Anchises is a highly elongated body with an a/b = 1.62 £+ 0.02 and
b/c ~ 1 using an amplitude-aspect model and a grid search of relevant parameter
space. Additionally, through the same process, we find an amplitude phase coefficient
of 0.002 mag/degree, which indicates a small, but fairly typical, correlation between

the object’s light curve amplitude and the phase angle at which it was observed.

e Using five epochs of data, including the 1986 data presented in French (1987), we find

that Anchises has a significantly tilted pole orientation. Considering that Horner et al.
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(2012) predict a retrograde rotation, we present (198, —29) as our preferred solution,
though we cannot entirely rule out either the degenerate orientation of (18, 29) or the

more poorly fit values of (198,6) and (18,—6) using our models alone.

e We calculate a minimum density for Anchises of 0.35 g/cm? assuming a strengthless
rubble pile pulled into its elongated shape through rotational forces. Such a low density

suggests some cause other than rotation for the asteroid’s highly elongated shape.

e Using simultaneous V' and [ filter light curve observations, we searched for color vari-
ation over the visible surface of the object at four different epochs. We see some signs
of a coherent color variation signalling a possible change in surface weathering or a
potential impact crater at that location. This variation is only present, however, in the
2011 and 2012 epochs and is not visible in the later epochs, although data from those
epochs are of lower quality. More high-fidelity observations are required to confirm

this feature.



116
_ 5

Trojans in Context

5.1 Solar System Taxonomy

Several different taxonomic systems have been used to classify minor bodies over the years.
Additionally, methods vary depending on which population one is interested in and where
that population resides in the Solar System. Definitions and descriptions of these populations
are provided in Section 1.1. Methods of classification for several different broad populations,
as well as analysis for several different specific surveys are discussed in this chapter. These
discussions are not meant to represent an exhaustive examination for these populations, but
rather to provide a broad overview of the current classification schemes in order to place my
work with Jupiter Trojans in proper context. The individual surveys that were chosen for
further analysis were selected primarily based on sizes of the datasets, publication dates, and
availability of broadband visible photometry that could be readily converted to aj. These
surveys are meant to give a general idea of the color distributions present in these populations

as compared to that of the Jupiter Trojan clouds.

5.1.1 NEOs

Near Earth Objects (NEOs) are in the unique position of being the link between extremely
well-measured and well-studied meteorites and the large number of moderately well-studied
Main Belt objects. Meteorites tend to be classified based on their composition and internal
structure (see Weisberg et al. 2006). Much effort is being made to tie this very detailed

analysis to that of the much more difficult to observe space rocks we refer to as NEOs.
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Likewise, significant research is also being done to source the NEO population to various
regions in the Main Belt. Dandy et al. (2003) provide BV RIZ photometric observations
for 56 NEOs ranging in H magnitude from 13.8 to 21.6 mag. They attempt to connect the
taxonomic types of these objects to regions of orbital space that evolutionary models predict
would have required different amounts of time to populate with objects removed from the

Main Belt.

5.1.2 Main Belt

Taxonomy of the Main Belt goes back to Wood & Kuiper (1963) and Chapman et al. (1971),
who first began grouping objects into categories based on their colors and spectra. This
taxonomy received a degree of formalism with Tholen (1984), who introduced 13 or 14
distinct classes and subclasses using principal component and cluster analysis. Several other
competing schema have been used since, sharing similar naming conventions as those found
in Tholen (1984). Here we use the taxonomic methods described by DeMeo et al. (2009) as
it has been applied to many more objects and is well defined across both visible and infrared
wavelengths. “Key” spectra from DeMeo et al. (2009) are shown in Figure 5.1.

Many large and robust visible light surveys have been done for Main Belt objects, and
over 700,000 asteroids have been discovered to date'. Thus, we limit ourselves to the massive
database provided by the Sloan Digital Sky Survey (SDSS) and the objects collected in their
Moving Object Catalogue (MOC) (Abazajian et al. 2009; Ivezié et al. 2002). Figure 5.2,
Figure 5.3, and Figure 5.4 show 1054 objects from this sample that had good photometry,

and H < 12.5 mag. This cut in magnitude was made to make the sample size manageable and

1As of March 12th, 2017. http://www.minorplanetcenter.net/iau/lists/ArchiveStatistics.html
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Figure 5.1: Figure credit: DeMeo et al. (2009). Taxonomic classes as defined by
DeMeo et al. (2009) over 0.45 — 2.45um. These sample spectra show the wide variety in
features and slopes present in asteroid spectra. The D, X complex, and C types shown here
were used to calculate aj. in Section 2.5.

more comparable to the Jupiter Trojan sample without sacrificing the spatial distribution
of the asteroids. From this sample, we highlight 52 resonant objects of the Hilda population

(displayed in light green in the Figures).
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Figure 5.2: A plot of semi-major axis (a) vs a} for objects in the inner Solar System. The
NEOs are from a survey performed by Dandy et al. (2003), the Main Belt and Hilda data are
from the SDSS MOC (Abazajian et al. 2009; Ivezi¢ et al. 2002), and the Trojan data are from
this work as described in Chapter 2. All orbital elements are from the Minor planet Center
(http://www.minorplanetcenter.net). To the right of the plot are normalized histograms

showing the color distribution for the dynamical classes shown. These histograms can be
seen in more detail in Figure 5.4.

5.1.3 Centaurs

Centaurs are relatively difficult to study compared to some of the other Solar System popu-
lations due to their distances, dark surfaces, and small numbers. Taxonomic classifications
for Centaurs depart from the systems used for the inner Solar System and tend to be descrip-
tive in nature. For instance, Tegler et al. (2016) describe two groups of Centaurs that they
call “gray” and “red.” Wong & Brown (2017) and Wong & Brown (2016) find “Less Red”

(LR), “Red” (R), and “Very Red” (VR) objects throughout the Trojan, Centaur, and TNO
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populations. It should be noted that, generally speaking, the gray population of Tegler et al.
(2016) corresponds to the R population from Wong & Brown (2017) and the D-type Jupiter
Trojans discussed here in Section 2.6.

Though Tegler et al. (2016) present excellent color photometry for 35 Centaurs, they do
not include I band observations necessary for calculating a. (see Equation 2.2). Thus, for
comparison purposes we used the dataset found in Peixinho et al. (2015b) and described by
Peixinho et al. (2015a) that contains 33 Centaurs, ranging in H from 5.9 to 12.3 mag. We
included these objects in Figure 5.3 and Figure 5.4. Figure 5.4 clearly shows the bimodal
color distribution of this population as well as the apparent similarity between the Centaurs

with lower a}. and the Jupiter Trojan color distribution.

5.1.4 TNOs

Trans-Neptunian Objects are generally grouped into dynamical families rather than tax-
onomic types, though both Tegler et al. (2016) and Wong & Brown (2017) extend their
taxonomies into the TNO populations. The myriad dynamical families of the TNOs are
determined by mean motion resonances (MMR) with Neptune as well as various orbital
parameters with a primary focus on relative orbital energetics, separating high and low incli-
nation/eccentricity objects from each other. The specifics of these distinctions are discussed
in Section 1.1.

We again pull data from Peixinho et al. (2015b) for Figure 5.3 and Figure 5.4. Due to
the large number of objects (326 in total), we were able to break them into their dynamical
families for this analysis and retain significant color distribution information for individual

subsets of the TNO population. Specifically, we note that the Cold Classical objects are too
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Figure 5.3: A plot of semi-major axis (a) vs a} for objects in the Solar System. Objects
with a semi-major axis less than 5.5 AU are shown in Figure 5.2. Data for the outer Solar
System are from Peixinho et al. (2015b). To the right of the plot are normalized histograms
showing the color distribution for some of the dynamical classes shown. These histograms
can be seen in more detail in Figure 5.4.

red to match the Jupiter Trojan colors, but they seem quite similar to the high a7 Centaurs

discussed above. The remaining dynamical families experience a wide distribution of colors

spanning much of the possible a’ range. The objects in this sample range from H = —1.1

mag (136199 Eris) to H = 9.2 mag.
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Figure 5.4: Histograms showing the color distributions for a7 for several populations
throughout the Solar System. The individual datasets used are discussed in Section 5.1

and the Jupiter Trojan data are from Chapter 2.

The populations generally increase in aver-

age semi-major axis from top to bottom. The plotted colors match those used in Figure 5.2

and Figure 5.3 and the total number of objects

in each sample is given in the upper right

corner of each plot. It should be noted that while a% value of 0 divides the D and X taxo-
nomic regimes for the Trojan asteroids, taxonomy of the Main Belt and NEO populations is
much more complex, while outer SS objects are classified in a different way altogether.
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5.2 Space Weathering and Surface Evolution
It is generally accepted that the surfaces of asteroids change with time. The exact cause and
precise effect of this evolution depends on the composition of the surface, local conditions,
and exactly whom you ask. Commonly cited sources of weathering include solar irradiation,
particle bombardment, and micrometeorite impact. The relative strengths and time scales
for these operations are still a matter of some debate and almost certainly a function of
distance from the Sun. Surface composition also plays a major role in the strength of space
weathering effects, but precise asteroid compositions remain unknown for the vast majority
of objects. This is especially true for Jupiter Trojans with their largely featureless spectra.
When combined, these facts mean that weathering effects, including even the direction of
color change for some objects, are still a matter of speculation within the community. In some
cases, surface composition is believed to be the primary culprit in taxonomic differences, and
in others it is related to the amount of weathering experienced by the object. For example,
Wong & Brown (2016) speculate that a mix of objects from both sides of the hydrogen
sulfide (HS) sublimation line (Figure 5.5) is responsible for the different color populations
from the Trojans outwards, while Dandy et al. (2003) suggest that Q-type NEOs are simply
unweathered S-type objects that have spent less time closer to the Sun than the Main Belt.
In addition to space weathering that acts on the surface expression of asteroids, it is
believed that collisional activity has the tendency to erase these effects through either minor
gardening or more catastrophic events. Both of these effects resurface the asteroid, placing
pristine material once more on the surface and resetting the weathering process. Again, the
rates of these events depend on the local environment and orbital energetics of the individual

object. All of this means smaller objects are generally less weathered than large objects as (if
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we assume they were created through collisional grinding) they more recently experienced a
resurfacing event. This is one possible explanation for the difference in color and inclination
distribution between large and small Jupiter Trojans discussed in Subsection 2.5.2. Finally,
it is generally assumed that an individual object conforms to a single taxonomic type, and
experiences relatively uniform weathering across its surface. However, in Chapter 3 we show
that color variation can, indeed, be present for some objects at a statistically significant level.
It is likely that these variations contribute in some way to the width of color distributions for
various populations. This may be especially true for populations like the Trojans and other
resonant objects that share a nearly identical semi-major axis, as they experience similar

amounts of solar radiation, and therefore, presumably similar amounts of weathering.

5.3 Source Regions for the Jupiter Trojans

The Jupiter Trojan clouds are populated by a massive number of objects, possibly even
rivalling the number of Main Belt objects (Yoshida & Nakamura 2005). Understanding such
a large population of objects that has experienced relatively little outside contamination
and consistent internal evolution is necessary to understanding the formation of the Solar
System. However, as a population, Jupiter Trojans offer some unique difficulties to study
and inherent mysteries that must be explained by any models attempting to describe their
origin. Specifically, unlike most Main Belt objects, Jupiter Trojans have no good meteorite
analogues or strong spectral features that can lend support to a specific compositional theory.
Additionally, Trojans have a broad distribution of inclinations (up to about about 40°)
compared to the vast majority of Main Belt objects, which have inclinations less than 20°.

Populating this orbital space is dynamically difficult, and it would involve more than simple
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migration of nearby objects. Finally, there is a significant number discrepancy between the
L4 and L5 clouds. Karlsson (2010) found that the L4 leading cloud contains 29% more
objects than the L5 trailing cloud down to the completeness limit of H = 11.5 mag, while
Szabé et al. (2007) estimates as many as 60% more L4 objects than L5 objects for the smaller
bodies. Recreating these different sized populations is a necessary challenge when attempting

to model Jupiter Trojan origins.

5.3.1 In Situ

One possible source region for Jupiter Trojans is the local area surrounding Jupiter as it
formed. It has been shown by Marzari & Scholl (1998a) and Fleming & Hamilton (2000)
that analytic and numerical models can reproduce the capture of large numbers of objects
at the L4 and L5 Lagrange points of Jupiter during the gas giant’s mass accretion phase.
Indeed, these models find that gas drag and a growing Jupiter may be critical to stabilizing
the orbits of Jupiter Trojans into those we see today. Marzari & Scholl (1998b) suggest
that the correct rate of increase for Jupiter’s mass could result in a secular resonance that
converts high eccentricity, low inclination orbits into high inclination, low eccentricity orbits
like those seen in today’s Trojan populations. However, Marzari & Scholl (1998a) also find
that nebular gas drag could create an asymmetry in the capture probabilities for the two
clouds, but with the opposite result than we see, i.e., in their simulations more objects were
captured in the L5 cloud than the 1.4 due to this aspect. Ultimately, it is quite likely that
large, primordial Trojan clouds were formed simultaneous to the formation of Jupiter, but

whether these primordial objects survived until the present is another matter.



126

5.3.2 Outer Solar System

The Nice Model (described by Tsiganis et al. 2005) shows through numerical simulation that
significant migration of the giant planets in the outer Solar System could have been possible
during the first few million years of Solar System formation to result in the current orbital
elements of these planets. One major obstacle with this hypothesis is that the Lagrange
regions of Jupiter, which can otherwise be shown to be mostly stable over the lifetime of the
Solar System (Levison et al. 1997), become completely chaotic when Jupiter and Saturn enter
a disruptive 2:1 MMR. It is during the time shortly after this period that Morbidelli et al.
(2005) show capture of a new Trojan population is possible. Their simulation suggests that
it would be possible for the large numbers of outer Solar System objects disrupted during
the Jovian/Saturnian resonance to be captured in sufficient numbers to produce the current
Jupiter Trojan clouds at their present range of inclinations. Marzari & Scholl (2007) go
further to suggest that secondary resonances in addition to the 2:1 resonance with Saturn
would have begun to destabilize any original Jupiter Trojans before even reaching that point,
ending in the removal of over 90% of any original population prior to the L4 and L5 regions’
resettlement by captured interlopers from the outer Solar System. Wong & Brown (2016)
even suggest a more precise outer Solar System origin, as shown in Figure 5.5, based on
the color differences present within the clouds. Though the idea of a progenitor population
for the Jupiter Trojans coming from the outer Solar System has an easier time explaining
the increased inclinations of the camps, it struggles to reproduce the number discrepancy

between the two camps.
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Figure 5.5: Figure credit: Wong & Brown (2016). A full figure description can be
found in the original source. The hypothetical source region for the Trojans suggested by
Wong & Brown (2016) is from a primordial population straddling the HaS sublimation line
at around 20 AU from the Sun.

5.4 Conclusions

We can see from Figure 5.2 and Figure 5.3 that Jupiter Trojans are an integral part to
understanding the Solar System. They bridge and define the boundary between the inner
and outer Solar System. The color distribution of these populations suggests an interesting
relationship to both the inner and outer Solar System, as can be seen in Figure 5.4, as
the Trojans share aspects with both the Main Belt and the icy objects of the Centaurs and
TNOs. All of this brings into question the origins of these objects, and we see that answering
this question could inform our understanding of the formation of the entire Solar System.
An accurate assessment of the color distribution of this population and the reason for that

distribution brings us one step closer to resolving the conundrum of their origins.



128
_ 6 —

Conclusions and Future Work

6.1 Summary of Results

6.1.1 Photometry

In Chapter 2 we present photometric observations for 110 of the largest Jupiter Trojans,
each at multiple epochs. Using measured BV RI colors we define a new principal component
a¥. We use this parameter to classify these objects by means of a proxy for the Bus-
DeMeo taxonomic scheme. We find 84% of the largest Jupiter Trojans to be consistent with
D-type classification and that 16% have less-red slopes more consistent with X-type and
C-type classifications. We also look for color trends with inclination similar to those found
by Roig et al. (2008). For the largest members of the Jupiter Trojan clouds, we find no
appreciable difference in color distributions between either high and low inclination objects,

or the L4 Greek and L5 Trojan camps. The portion of this work describing the L5 Trojan

camp is published in Chatelain et al. (2016).

6.1.2 Light Curve Analysis

In Chapter 3 we examine twelve objects for color variations in V —I and amplitude using light
curves with partial rotational coverage. We discover that two thirds of the objects observed
have at least some suggestion of color variation and one third have highly convincing signs
of large surface features. We show that for a proper examination of photometric colors
for Jupiter Trojans, such as that done in Chapter 2, surface variations must be taken into
account, as intrinsic color variability may result in a difference of over 0.05 mag between a

single epoch color measurement and a true mean value.
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Additionally, in Chapter 4 we perform extensive analysis of (1173) Anchises. Observed
over 5 epochs, with a total baseline of nearly 30 years, we calculate a very precise rotation
period, pole orientation, and axial ratios for Anchises. We also find some evidence of V' — I
color variation for this object at a level of ~ 0.1 mag. This specific target serves as an
example of the type of analysis that can be done with extensive observations of Jupiter

Trojan light curves.

What We Have Learned

e The largest L4 Greeks and L5 Trojans have nearly identical color profiles implying
that they were sourced from the same region and experienced similar weathering and

evolutionary processes.

e The largest L4 Greeks and L5 Trojans do not show the same color gradation with
inclination as smaller Jupiter Trojans. The fact that most of the largest Jupiter Trojans
and redder small Jupiter Trojans both have relatively high inclinations could imply that

collision rates are decreased at high inclinations.

e Many large Jupiter Trojans from both camps show signs of color variation over their
rotation period consistent with less red cratering features on their surfaces. This implies

either a high collision rate or an exceptionally slow weathering process for these objects.

e Surface color variation also implies a complex history and surface composition for many
of these objects that needs to be taken into account when performing photometric and

spectroscopic analyses.
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e We calculated a newly precise rotational period for (1173) Anchises along with a pole
orientation and shape model for this object. Similar methods could be used to under-

stand other Jupiter Trojans as well.

e We find additional evidence of color variation for (1173) Anchises which, with addi-
tional calibration and analysis, could lead to a detailed understanding of this object’s

surface features and the recent collision rates in the Jupiter Trojan clouds.

e The largest Jupiter Trojans seem to fit a color profile trend with other minor body
populations that are relatively close to them in semi-major axis. This likely means
that though they are dynamically very different from these populations, weathering
is likely the primary driving force in their coloration and most of these objects were

sourced from the same parent population.

6.2 Future Work

As a continuation of the photometry project, smaller Jupiter Greeks and Trojans can be ex-
amined for population bimodality, such as that seen by Emery et al. (2011) and Wong et al.
(2014), and taxonomic distribution using methods similar to Hasselmann et al. (2011) and
DeMeo & Carry (2013). This will extend these examinations to smaller objects and expand
the overall completeness within the Trojan clouds. This examination should help us to un-
derstand what role the Greeks and Trojans play in Solar System formation as a whole. If the
bimodality seen by Emery et al. (2011) is real, and represents two distinct parent popula-
tions as suggested in Wong & Brown (2016), understanding the origins of these populations

and their eventual fates could be vital to fully understanding the taxonomic, and presumably
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compositional, gradient that exists in the Main Belt (DeMeo & Carry 2013). A thorough
understanding of Jupiter’'s Greek and Trojan asteroids is necessary to understanding the
formation of this region of the Solar System.

Continuation of the light curve project (as always) requires additional data. Many more
light curves with full phase coverage at different orbital longitudes are necessary to describe
the objects discussed in Chapter 3 to the same level we describe (1173) Anchises in Chapter 4.
With additional coverage from future observations and from the literature, accurate pole
orientations and axial ratios, as well as more precise shape models will be possible. If these
observations include multiple filters, the color variation that we find for several of these
objects could be connected to physical features on their surfaces, with latitudes, shapes, and
true colors of the features able to be derived. Additionally, a more advanced shape model
for these features is required that takes into account asteroid shape, feature shape, and more
complicated lighting features such as phase effects and scattering. After the fact calibration
using background stars, or additional light curves on photometric nights would allow for
absolute color measurements that would make it possible to determine exactly what color
the surface features we detect are. Furthermore, the models could be tested and calibrated
using an object with more detailed surface observations and known color variation such as
Mars’ moon Phobos.

The next step for (1173) Anchises is to calibrate these data to allow us to derive accurate
estimates for the absolute brightness at each epoch. This will require calibrations using
either new observations or measured brightnesses in trustworthy catalogs of background
stars. Once absolute calibrations have been made, we can calculate a robust phase curve, a

reliable absolute magnitude, and (with an albedo estimate) physical dimensions for (1173)
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Anchises. Additionally, using the period, shape model, and pole orientation presented in this
work, along with infrared data from IRAS, Akari, and WISE (Horner et al. 2012), a more
precise thermal inertia and albedo could be determined for this object.

Further observations of Anchises” amplitude over the next few years, such as those being
done by Robert Stephens (Stephens et al. 2016b), could help constrain the pole latitude and
eliminate some of the degeneracies in the pole determination. Such observations would pro-
vide additional longitudinal coverage and allow more detailed shape models to be constructed
as we get a better view of both poles. With simultaneous color data, such observations could

also confirm the color variation seen in the 2011 and 2012 epochs.

6.3 Lucy and the Future of Trojan Exploration

Lucy is a spacecraft mission that was approved by NASA on January 4th, 2017. The mission
will fly past five Jupiter Trojans and one Main Belt object between 2025 and 2033. The
predicted flight path and encounters are shown in Figure 6.1. It is currently planned that the
spacecraft will launch in October, 2021 and reach its first Jupiter Trojan, (3548) Eurybates,
in August, 2027. Over the next year or so, Lucy will fly by (15094) Polymele, (11351)
Leucus, and (21900) Orus. In order, these objects are listed by their discovery designations,
1999 WB,, 1997 TSy5, and 1999 VQp in Figure 6.1. At this point, Lucy will leave the L4
cloud and head to (617) Patroclus and its companion Menoetius in the L5 camp. It should
arrive at this Trojan binary system by March, 2033. We present photometric colors for
(3548) Eurybates, (21900) Orus, and (617) Patroclus in Chapter 2. In addition to the first
high resolution images of any Jupiter Trojans, the Lucy mission will be able to gather unique

data on the physical characteristics of these primitive objects. These visitations will no doubt
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revolutionize our understanding of Jupiter Trojans, but more ground based research, such
as that described here, will be necessary to interpret the observations of Lucy for the larger
Trojan populations. For example, light curve analysis such as that performed in Chapter 3
and Chapter 4 for the Lucy targets would allow researchers not only to know what to expect
from their in situ observations, but would also allow them to know what physical reality
might explain such observations with much more detail. A highly precise rotation period
is necessary for planning the mission flyby of an object, and with the much larger range of
phases that will be visible from the spacecraft, understanding Trojan phase properties will
also be invaluable for properly calibrating the data. Observations such as those done here are
necessary for these calculations. These data combined should allow us to estimate cratering
rates within the Jupiter Trojan swarms, which in turn will tell us about the evolutionary

history of both these objects and ultimately the Solar System.
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A Orbital Mechanics
Throughout this document we use many terms and discuss many ideas related to the funda-
mentals of orbital mechanics for Solar System bodies. Here we will define and address some
of these terms and ideas.

The standard elements that are required to define an elliptical orbit are as follows:

a Semi-Major Axis: This is one half of the major axis distance, where the major axis is
the line that crosses the entirety of the ellipse and passes through both the focus and
the center of the orbit. This value will typically be given in Astronomical Units (AU),

or the distance equal to the semi-major axis of Earth.

e Eccentricity: A measure of how much an orbit deviates from circular, eccentricity can
be calculated by dividing the distance between the focus and the center of an ellipse
by the semi-major axis. For elliptical orbits, this will result in values between 0 and
1 with e = 0 being a perfectly circular orbit and with e = 1 being an open parabolic

orbit.

¢ Inclination: This is the angle that the orbit is inclined with respect to the ecliptic, which

is defined as the plane through which the Earth travels as it orbits the Sun.

) Longitude of the Ascending Node: This is the angular direction of the orbital as-
cending node with respect to the vernal point in Pisces. The ascending node is the
location on an orbital path that the object would cross from below the ecliptic plane

to above it.
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Figure A.1: A graphical depiction of the angular orbital elements described in this section.

w Argument of the Perihelion: This is the angular separation between the periapsis of

an object and the ascending node.

With these primary values, any orbit can be defined, but there are other important
elements that are often used when describing either an orbit or an object’s location along
its orbital path. We have listed several of these below. The angular orbital elements are

depicted in Figure A.1.

P Orbital Period: This is the time it takes an object to complete one orbit. This value is
typically given in years for objects that orbit the Sun, and P(years) can be calculated

from Kepler’s third law, P? = a? if the object orbits the Sun, and a is given in AU.
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q Perihelion: This is the distance of closest approach for a Solar System body that orbits
the Sun. This value is usually given in AU. Note: The general name for ¢ (for objects

not necessarily orbiting the Sun) is “Periapsis”.

@@ Aphelion: This is the distance of furthest extent for an object that orbits the Sun. This
value is usually given in AU. Note: The general name for @) (for objects not necessarily

orbiting the Sun) is “Apoapsis”.

T Time of Periapsis: The time that an object passed through perihelion, this value can
be any date in the past or future that the object can be found at perihelion. Typically
the most recent time in the past is given. This value is important for calculating v and

relates to the actual position of the object rather than simply describing its orbit.

v True Anomaly: This is the actual angular separation between the current location of

an object and its previous perihelion passage.

With the exception of v the above orbital elements are relatively constant with time.
Once an accurate orbit has been determined for a Solar System object, its exact location
can be reasonably well predicted at any time in the past or future through the calculation
of ephemerides. These ephemerides require the computation of the right Ascension (RA),
Declination (DEC), and geocentric distance of the Solar System object at the specified time
from the orbital elements described above. These are used by astronomers to locate and
observe objects with known orbits around the Sun, but the same techniques can be applied

to moons and binary stars, or any object with a well defined orbit.

B Full Photometry Data Tables



Photometry Data: L4 Greeks
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Photometry Data: L5 Trojans
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Table B.2 — continued from previous page
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2011 Aug. 10
2011 June 24
2012 Oct. 4
2011 Aug. 9
2011 Aug. 11
2011 June 27
2011 Aug. 10
2010 July 2
2010 Oct. 22
2010 Oct. 23
2010 Nov. 25
2010 Nov.
2011 June 24

m
m
m
m

1.0m
42in
1.0m
1.0m
1.0m
1.0m
1.0m
1.0m
0.9m
0.9

1.0

1.0

1.0m
1.0

0.9

0.9m
42in
42in
42in
0.9m
1.0m
1.0m
1.0m
0.9m
1.0m
1.0m
1.0m
1.0m
0.9m
0.9m
0.9m
0.9m
42in
42in
1.0m

Sarpedon
Sarpedon
Alcathous
Alcathous
Alcathous
Alcathous
Phereclos
Phereclos
Phereclos
Phereclos
Phereclos
Phereclos
Phereclos
Phereclos
Phereclos
Cebriones
Cebriones
Pandarus
Pandarus
Memnon
Memnon
Laocoon
Laocoon
Paris
Paris
Paris

)
)
)

2223) Sarpedon

)
)
)

)
)
)
)

2207) Antenor

2223
2223
2241
2241
2241
2241
2357
2357
2357
2357
2357
2357
2357
2357
2357
2363
2363
2674
2674
2893
2893
2893
2895
2895
3240
3240

XI
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2011 Aug. 11
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2011 June 27
2013 Nov. 10
2011 Aug. 11
2011 Aug. 9
2011 Nov. 12
2011 Nov. 16
2011 Aug. 10
2011 June 22
2012 Oct. 4
2011 Aug. 11
2011 Aug. 9
2011 Nov. 12
2013 Nov. 10

1.0m
1.0m
1.0m
42in
1.0m
1.0m
1.0m
42in
1.0m
1.0m
42in
0.9m
1.0m
42in
1.0m
1.0m
0
0
9
.0
1.0m
1.0m
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7352

7352

12929
12929
12929
12929
16070
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16070
22180
22180
22180
32496
32496
32496
32496
34746
34746
76867
76867
76867
76867
76867

@ The three telescopes used to acquire these data were the C’TIO SMARTS 0.9-m and 1.0-m as well as the Lowell /2-in. telescopes.

Note: Weighted means, a%, and physical parameters for individual objects can be found in Table 2.4.
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C Trojan Color-Curve Data

Table C.1: 884 Priamus: V — I Color Variation for Partial Light Curve

Date  Time” 1% I V-1
(UT) (Relative) (Interpolated)
15 Nov 2011  23:39:55  0.100 £ 0.007  0.080 + 0.015  0.020 + 0.016
15 Nov 2011  23:45:42  0.101 £ 0.006 0.066 + 0.012  0.035 + 0.013
15 Nov 2011 23:51:27  0.084 £+ 0.006 0.067 £ 0.011  0.017 + 0.012
15 Nov 2011 23:57:14  0.081 £+ 0.005 0.055 £ 0.010  0.026 + 0.011
16 Nov 2011 00:02:59  0.058 £ 0.005 0.030 £ 0.010  0.028 + 0.011
16 Nov 2011 00:08:46  0.038 £ 0.005 0.028 + 0.010  0.010 + 0.011
16 Nov 2011 00:14:31  0.037 £ 0.005 0.031 £+ 0.009  0.006 + 0.011
16 Nov 2011 00:20:17  0.029 £ 0.005 0.019 £+ 0.009  0.010 + 0.011
16 Nov 2011 00:26:02  0.003 £ 0.005 0.003 £+ 0.010  0.000 + 0.011
16 Nov 2011 00:31:49  0.002 £ 0.005 0.011 + 0.009 -0.009 + 0.010
16 Nov 2011 00:37:35 -0.007 £ 0.005 0.000 + 0.009 -0.007 + 0.010
16 Nov 2011 00:43:20 -0.027 £ 0.005 -0.013 + 0.009 -0.014 + 0.010
16 Nov 2011 00:49:07 -0.034 £+ 0.005 -0.009 + 0.009 -0.025 + 0.010
16 Nov 2011 00:54:52 -0.048 £ 0.005 -0.028 + 0.009 -0.020 + 0.010
16 Nov 2011 01:00:38 -0.042 + 0.005 -0.050 + 0.009  0.008 + 0.010
16 Nov 2011 01:06:24 -0.036 £+ 0.005 -0.060 £+ 0.009  0.024 + 0.011
16 Nov 2011 01:15:27 -0.048 £+ 0.005 -0.056 £+ 0.009  0.008 + 0.011
16 Nov 2011 01:21:12 -0.061 £ 0.005 -0.065 £ 0.009  0.004 £+ 0.011
16 Nov 2011 01:26:59 -0.052 £ 0.005 -0.065 £+ 0.009  0.013 + 0.011
16 Nov 2011 01:32:45 -0.047 £ 0.005 -0.039 £ 0.009 -0.008 £ 0.011
16 Nov 2011 01:38:30 -0.061 £+ 0.005 -0.030 £ 0.010 -0.031 + 0.011
16 Nov 2011 01:44:17 -0.038 £ 0.005 -0.026 £+ 0.010 -0.012 + 0.011
16 Nov 2011 01:50:02 -0.022 £+ 0.005 -0.010 £ 0.010 -0.012 + 0.012
16 Nov 2011 01:55:49 -0.012 £ 0.005 0.012 £ 0.010 -0.024 £ 0.012
16 Nov 2011 02:29:30 -0.008 £+ 0.009 -0.009 + 0.011  0.000 + 0.014
16 Nov 2011 02:35:16 -0.003 £ 0.009  0.005 £+ 0.012 -0.008 + 0.015
16 Nov 2011 02:41:02  0.007 £ 0.009 0.010 £ 0.012 -0.003 + 0.015
16 Nov 2011 02:46:47 0.002 £ 0.010 0.013 £ 0.012 -0.012 £ 0.016
16 Nov 2011 02:52:33  0.004 + 0.011 -0.001 + 0.012  0.004 + 0.016

Note: These data are plotted in Figure 3.1.
% Times have been corrected for light travel time between the object and the observer.

Table C.2: 911 Agamemnon: V — I Color Variation for Partial Light Curve

Date  Time” 1% 1 V-1T
(UT) (Relative) (Interpolated)
24 Feb 2013 00:54:27 0.017 £ 0.016 0.019 £ 0.014 -0.001 £ 0.021
24 Feb 2013 00:58:02 -0.001 + 0.016 -0.006 + 0.014  0.005 £ 0.021
24 Feb 2013 01:01:37 -0.031 + 0.016 -0.008 £+ 0.014 -0.023 £ 0.021
24 Feb 2013 01:05:11 -0.021 + 0.016 -0.012 + 0.015 -0.008 £ 0.022
24 Feb 2013 01:08:45 -0.006 + 0.017 -0.009 + 0.016  0.003 £ 0.023
24 Feb 2013 01:12:20 -0.008 + 0.018 0.001 £+ 0.017  -0.008 £ 0.025
24 Feb 2013 01:15:55 0.014 + 0.018 0.002 + 0.017  0.013 £+ 0.025
24 Feb 2013 01:19:29 0.006 + 0.018 -0.001 + 0.017  0.007 £+ 0.025
24 Feb 2013 01:25:26 -0.009 + 0.018 0.000 £ 0.016  -0.009 + 0.024
24 Feb 2013 01:29:00 -0.004 + 0.016 -0.001 + 0.015 -0.002 £ 0.022
24 Feb 2013 01:32:35 0.002 + 0.017 -0.002 £ 0.017  0.004 £ 0.024
24 Feb 2013 01:36:09 0.018 + 0.018 0.009 £+ 0.017  0.009 + 0.024
24 Feb 2013 01:39:44 0.047 + 0.018 0.026 + 0.017 0.021 £+ 0.024

Continued on next page
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Table C.2 — continued from previous page
1

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
24 Feb 2013 01:43:19 0.027 £ 0.018 0.022 £ 0.016  0.005 £+ 0.024
24 Feb 2013 01:46:53 0.016 + 0.016 0.010 £ 0.016  0.007 £+ 0.023
24 Feb 2013 01:50:27  0.010 + 0.020 0.010 £ 0.017  0.001 + 0.026
24 Feb 2013 01:56:21  0.011 + 0.016  0.010 £ 0.018 0.002 £ 0.024
24 Feb 2013 01:59:56  0.024 + 0.019 0.011 £ 0.018  0.013 £ 0.027
24 Feb 2013 02:03:30  0.010 + 0.019  0.010 £ 0.017  0.000 £ 0.025
24 Feb 2013 02:07:05 0.048 + 0.017 0.013 £ 0.016  0.036 + 0.023
24 Feb 2013 02:10:39  0.033 + 0.017  0.018 £+ 0.017 0.016 + 0.024
24 Feb 2013 02:14:14  0.020 + 0.018 0.013 £ 0.017  0.007 £+ 0.025
24 Feb 2013 02:17:48 0.019 + 0.016 0.016 = 0.016  0.003 £ 0.022
24 Feb 2013 02:21:23  0.010 + 0.017  0.019 £ 0.015 -0.009 £ 0.023
24 Feb 2013 02:40:54 -0.002 + 0.018 0.007 £ 0.017  -0.009 £ 0.025
24 Feb 2013 02:44:29 0.012 + 0.016  0.008 + 0.015 0.004 £ 0.022
24 Feb 2013 02:48:03  0.052 + 0.014 0.012 £ 0.014  0.040 £+ 0.020
24 Feb 2013 02:51:38  0.018 + 0.015  0.005 £ 0.015 0.014 + 0.021
24 Feb 2013 02:55:13 -0.005 + 0.016  0.005 £ 0.014  -0.010 £+ 0.021
24 Feb 2013 02:58:47 0.029 + 0.014 0.013 £ 0.014  0.016 £+ 0.019
24 Feb 2013 03:02:21  0.005 + 0.014 0.013 £ 0.014 -0.007 £+ 0.020
24 Feb 2013 03:05:55 -0.011 + 0.014 0.008 + 0.014 -0.019 £ 0.020
24 Feb 2013 03:11:54 -0.011 + 0.015 0.003 £ 0.014  -0.014 £ 0.021
24 Feb 2013 03:15:29 0.003 + 0.016  0.007 £ 0.015 -0.004 £ 0.022
24 Feb 2013 03:19:03 -0.004 + 0.015 0.009 £+ 0.014 -0.012 £ 0.021
24 Feb 2013 03:22:38  0.007 + 0.017  0.002 + 0.015 0.005 + 0.023
24 Feb 2013 03:26:13 -0.009 + 0.015 0.003 £ 0.015 -0.011 £ 0.021
24 Feb 2013 03:29:47  0.032 + 0.016 0.003 + 0.016  0.030 £ 0.022
24 Feb 2013 03:33:21  0.024 + 0.014 0.012 + 0.015 0.013 + 0.021
24 Feb 2013 03:36:57 0.029 + 0.014 0.015 + 0.014 0.014 £ 0.020
24 Feb 2013 03:42:48 0.021 + 0.014 0.010 + 0.014 0.011 £+ 0.020
24 Feb 2013 03:46:22 0.026 + 0.015 0.016 + 0.014 0.011 + 0.021
24 Feb 2013 03:49:58 0.022 + 0.014 0.015 £ 0.014  0.007 £ 0.020
24 Feb 2013 03:53:32  0.013 + 0.014 0.017 £ 0.013  -0.004 £+ 0.019
24 Feb 2013 03:57:06 0.031 + 0.014 0.025 £ 0.013  0.007 £+ 0.019
24 Feb 2013 04:00:40 0.049 + 0.014 0.033 £ 0.014  0.017 £+ 0.019
24 Feb 2013 04:04:15 0.035 + 0.015 0.032 £ 0.014  0.003 £ 0.021
24 Feb 2013 04:07:50 0.044 + 0.015 0.024 £ 0.015  0.021 £+ 0.021
24 Feb 2013 04:13:47 0.019 + 0.014 0.009 + 0.016  0.010 + 0.021
24 Feb 2013 04:17:21  0.009 + 0.014 0.004 + 0.015  0.005 £ 0.020
24 Feb 2013 04:20:55 0.028 + 0.015 0.018 + 0.015 0.010 + 0.021
24 Feb 2013 04:24:30 0.008 + 0.014 0.022 + 0.013 -0.014 + 0.019
24 Feb 2013 04:28:05 0.015 + 0.014 0.012 +£ 0.014  0.004 £+ 0.019
24 Feb 2013 04:31:39 -0.002 + 0.014 0.012 + 0.014 -0.014 + 0.019
24 Feb 2013 04:35:13 -0.010 + 0.014 0.014 + 0.013  -0.023 + 0.019
24 Feb 2013 04:38:48 -0.001 + 0.015 0.013 £ 0.014 -0.014 £ 0.020
24 Feb 2013 04:44:39 -0.011 + 0.014 0.009 £+ 0.013  -0.020 £+ 0.019
24 Feb 2013 04:48:13  0.008 + 0.014 0.011 £+ 0.014 -0.002 £ 0.019
24 Feb 2013 04:51:48 -0.015 + 0.015 0.004 + 0.013 -0.019 £ 0.020
24 Feb 2013 04:55:23 -0.001 + 0.014 -0.002 + 0.014  0.002 £+ 0.019
24 Feb 2013 04:58:57 0.001 + 0.014 -0.003 + 0.014  0.004 + 0.020
24 Feb 2013 05:02:32  0.011 + 0.014  0.004 £+ 0.013 0.008 + 0.019
24 Feb 2013 05:06:06 -0.006 + 0.014 0.004 + 0.014 -0.009 £ 0.019
24 Feb 2013 05:09:41 -0.016 + 0.015 -0.003 £+ 0.014 -0.013 £ 0.020
24 Feb 2013 05:15:31 -0.018 + 0.014 -0.005 + 0.013 -0.012 + 0.019
24 Feb 2013 05:19:06 0.006 + 0.015 -0.008 + 0.013  0.014 + 0.020
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Table C.2 — continued from previous page

Date  Time” 1% 1 V-1
(UT) (Relative) (Interpolated)
24 Feb 2013 05:22:40 0.005 + 0.014 -0.011 £ 0.013  0.017 £+ 0.019
24 Feb 2013 05:26:14 -0.014 + 0.014 -0.003 £+ 0.013  -0.010 £+ 0.019
24 Feb 2013 05:29:49 -0.018 + 0.014 -0.003 + 0.013 -0.014 + 0.019
24 Feb 2013 05:33:24 -0.016 + 0.014 -0.015 £+ 0.014  -0.000 £+ 0.019
24 Feb 2013 05:36:58 -0.030 + 0.013 -0.007 + 0.013  -0.022 £+ 0.018
24 Feb 2013 05:40:32 -0.018 + 0.014 -0.002 + 0.013 -0.015 £+ 0.019
24 Feb 2013 05:46:23 -0.016 + 0.014 -0.018 + 0.014  0.002 + 0.019
24 Feb 2013 05:49:57 -0.024 + 0.014 -0.016 + 0.013 -0.007 £+ 0.019
24 Feb 2013 05:53:32 -0.043 + 0.014 -0.024 + 0.014 -0.018 £+ 0.019
24 Feb 2013 05:57:07 -0.054 + 0.014 -0.027 + 0.014 -0.027 £+ 0.020
24 Feb 2013 06:00:41 -0.045 + 0.014 -0.031 + 0.014 -0.014 £+ 0.019
24 Feb 2013 06:04:16 -0.025 + 0.014 -0.035 + 0.013  0.010 £+ 0.019
24 Feb 2013 06:07:50 -0.025 + 0.014 -0.036 + 0.014  0.011 + 0.019
24 Feb 2013 06:11:25 -0.056 + 0.015 -0.041 £+ 0.014 -0.015 £ 0.020
24 Feb 2013 06:17:15 -0.049 + 0.014 -0.038 + 0.014  -0.010 £+ 0.019
24 Feb 2013 06:20:50 -0.044 + 0.014 -0.038 £+ 0.014  -0.005 £ 0.020
24 Feb 2013 06:24:24 -0.030 + 0.015 -0.043 + 0.014  0.013 + 0.021
24 Feb 2013 06:27:59 -0.037 + 0.015 -0.046 + 0.014  0.009 £ 0.021
24 Feb 2013 06:31:33 -0.034 + 0.015 -0.047 + 0.015 0.013 + 0.021
24 Feb 2013 06:35:08 -0.054 + 0.015 -0.046 £+ 0.015 -0.008 £ 0.021
24 Feb 2013 06:38:43 -0.030 + 0.014 -0.041 £+ 0.013  0.012 £+ 0.019
24 Feb 2013 06:42:17 -0.054 + 0.014 -0.032 + 0.013 -0.021 + 0.019

Note: These data are plotted in Figure 3.5.
% Times have been corrected for light travel time between the object and the observer.

Table C.3: 1143 Odysseus: V — I Color Variation for Partial Light Curve

Date  Time” V 1 V—-T
(UT) (Relative) (Interpolated)
22 Oct 2010 04:20:03 -0.077 £ 0.020 -0.063 £+ 0.025 -0.015 £+ 0.033
22 Oct 2010 04:21:51 -0.061 £+ 0.021 -0.049 + 0.027 -0.013 £ 0.035
22 Oct 2010 04:23:38 -0.093 £ 0.017 -0.047 + 0.024 -0.047 £+ 0.026
22 Oct 2010 04:25:26 -0.031 £ 0.029 -0.057 + 0.017  0.025 £ 0.032
22 Oct 2010 04:27:14  0.004 £ 0.019 -0.058 £ 0.016  0.062 + 0.027
22 Oct 2010 04:29:02 -0.011 £ 0.015 -0.043 £ 0.016  0.031 + 0.021
22 Oct 2010 04:30:49 -0.038 £+ 0.027 -0.019 + 0.031  -0.020 + 0.056
22 Oct 2010  04:32:37 -0.025 £ 0.020 -0.022 + 0.035 -0.003 £+ 0.029
22 Oct 2010 04:34:25 -0.013 £+ 0.037 -0.030 £ 0.017  0.017 4+ 0.040
22 Oct 2010 04:36:12 -0.029 £+ 0.017 -0.035 + 0.014  0.006 + 0.023
22 Oct 2010 04:40:14 -0.046 + 0.016 -0.064 £ 0.017  0.017 &+ 0.024
22 Oct 2010 04:42:22 -0.008 £ 0.028 -0.069 + 0.015  0.061 £+ 0.030
22 Oct 2010 04:44:30 -0.034 £ 0.018 -0.047 +£ 0.015  0.013 £ 0.026
22 Oct 2010 04:46:37 -0.033 £ 0.014 -0.033 + 0.016 -0.000 £+ 0.020
22 Oct 2010 04:48:44 -0.005 £ 0.015 -0.030 + 0.013  0.024 £+ 0.019
22 Oct 2010 04:50:52 -0.030 £ 0.013 -0.015 + 0.010 -0.016 + 0.016
22 Oct 2010 04:53:00 -0.003 £+ 0.012 -0.021 £+ 0.009  0.018 £ 0.015
22 Oct 2010  04:55:08 -0.030 £+ 0.012 -0.025 £+ 0.009 -0.005 + 0.015
22 Oct 2010 04:57:15 -0.039 £ 0.012 -0.025 £+ 0.009 -0.014 £ 0.015
22 Oct 2010 04:59:23 -0.002 £ 0.012 -0.028 + 0.009  0.026 + 0.015
22 Oct 2010 05:03:13 -0.037 £ 0.012 -0.017 + 0.009 -0.021 £+ 0.015
22 Oct 2010 05:05:29 -0.012 £ 0.012 -0.007 £ 0.009 -0.005 + 0.015
22 Oct 2010 05:07:37 -0.021 £+ 0.012 -0.008 £+ 0.009 -0.013 £ 0.015
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Table C.3 — continued from previous page

Date  Time” 1% V-T
(UT) (Relative) (Interpolated)
22 Oct 2010 05:09:44 -0.033 £ 0.012 -0.022 £ 0.008 -0.012 £+ 0.014
22 Oct 2010 05:11:52 -0.022 £ 0.012 -0.027 £ 0.008  0.005 + 0.014
22 Oct 2010 05:14:00  0.039 £+ 0.012 -0.010 £+ 0.008  0.048 £ 0.015
22 Oct 2010 05:16:07 -0.002 £ 0.012  0.017 + 0.009 -0.020 £+ 0.015
22 Oct 2010 05:18:15 -0.000 £ 0.012  0.023 £+ 0.009 -0.024 + 0.015
22 Oct 2010 05:20:23 -0.009 £ 0.012 0.016 £+ 0.009 -0.025 £ 0.015
22 Oct 2010 05:22:30 -0.019 £ 0.012  0.016 + 0.009 -0.035 £ 0.015
22 Oct 2010 05:24:38  0.046 £ 0.012  0.022 + 0.009  0.024 £+ 0.015
22 Oct 2010 05:27:08 0.017 £ 0.012  0.026 + 0.009 -0.009 + 0.015
22 Oct 2010 05:29:16  0.036 £ 0.012  0.023 £ 0.009  0.012 £ 0.015
22 Oct 2010 05:31:24  0.051 £ 0.012  0.027 £ 0.009  0.023 £ 0.015
22 Oct 2010 05:33:31  0.022 £ 0.012 0.038 £ 0.009 -0.017 £+ 0.015
22 Oct 2010 05:35:39  0.019 £ 0.012  0.057 + 0.009 -0.038 £ 0.015
22 Oct 2010 05:37:47  0.067 £ 0.013  0.063 + 0.009  0.003 £+ 0.016
22 Oct 2010 05:39:55  0.087 £ 0.013  0.063 + 0.009  0.023 + 0.016
22 Oct 2010 05:42:02 0.077 £ 0.013  0.074 £ 0.009  0.002 £+ 0.016
22 Oct 2010 05:44:10  0.056 £ 0.012  0.064 + 0.009 -0.008 £ 0.015
22 Oct 2010 05:46:18  0.056 £ 0.013  0.075 + 0.009 -0.020 £+ 0.016
22 Oct 2010 05:49:03  0.061 £ 0.013  0.101 + 0.009 -0.041 + 0.016
22 Oct 2010 05:51:11  0.106 £ 0.013  0.105 + 0.009  0.001 £ 0.016
22 Oct 2010 05:53:19  0.080 £+ 0.013  0.111 £+ 0.009 -0.031 + 0.016
22 Oct 2010 05:55:27  0.072 £ 0.013  0.108 £+ 0.009  -0.036 + 0.016
22 Oct 2010 05:57:34  0.136 £ 0.013  0.103 + 0.009  0.033 + 0.016
22 Oct 2010 05:59:43  0.067 £ 0.013  0.102 + 0.009 -0.035 + 0.016
22 Oct 2010 06:01:51  0.113 £ 0.013  0.090 + 0.009  0.023 + 0.016
22 Oct 2010 06:03:59  0.133 £ 0.013  0.083 + 0.009  0.049 + 0.016
22 Oct 2010 06:06:07  0.075 £ 0.013  0.079 + 0.009 -0.004 + 0.016
22 Oct 2010 06:08:14  0.093 £+ 0.013  0.065 + 0.009  0.028 + 0.016
22 Oct 2010 06:11:06  0.073 £ 0.013  0.071 + 0.009  0.002 £+ 0.016
22 Oct 2010 06:13:14  0.068 £ 0.013  0.082 + 0.009 -0.015 + 0.016
22 Oct 2010 06:15:22  0.076 £ 0.013  0.077 £ 0.009 -0.002 £+ 0.016
22 Oct 2010 06:17:29  0.069 + 0.013  0.051 + 0.009  0.017 £+ 0.016
22 Oct 2010 06:19:37  0.076 £ 0.013  0.044 + 0.009  0.032 £+ 0.016
22 Oct 2010 06:21:45  0.057 £ 0.013  0.066 + 0.009 -0.009 + 0.016
22 Oct 2010 06:23:52  0.038 £ 0.013  0.059 £+ 0.009 -0.021 + 0.016
22 Oct 2010 06:26:01  0.063 + 0.013  0.036 + 0.009  0.027 + 0.016
22 Oct 2010 06:28:09  0.054 £ 0.013  0.044 + 0.009  0.009 + 0.016
22 Oct 2010 06:30:17  0.055 £ 0.013  0.028 + 0.009  0.027 + 0.016
22 Oct 2010 06:33:27  0.058 £ 0.013  0.005 + 0.009  0.052 £+ 0.016
22 Oct 2010 06:35:35  0.019 £ 0.012  0.007 £ 0.009  0.011 £ 0.015
22 Oct 2010 06:37:43 -0.001 £ 0.012 0.003 £+ 0.009 -0.005 + 0.016
22 Oct 2010 06:39:51  0.022 £ 0.014 0.011 + 0.014  0.010 £ 0.022
22 Oct 2010 06:41:59  0.025 £ 0.019  0.035 + 0.020 -0.010 £ 0.030
22 Oct 2010 06:44:07  0.046 £+ 0.050 0.022 + 0.023  0.023 £+ 0.055
22 Oct 2010 06:46:15  0.048 £ 0.015 0.011 + 0.018  0.037 £+ 0.019
22 Oct 2010 06:48:23  0.035 £ 0.017  0.005 +£ 0.011  0.030 £+ 0.020
22 Oct 2010 06:50:30  0.004 £+ 0.012 -0.010 + 0.009  0.013 £+ 0.015
22 Oct 2010 06:52:38 -0.022 £+ 0.012 -0.011 £+ 0.009 -0.011 £ 0.015
22 Oct 2010 06:55:42  0.001 £ 0.012 -0.010 + 0.009  0.011 £ 0.015
22 Oct 2010 06:57:50 -0.010 £ 0.012 -0.013 £ 0.009  0.003 £+ 0.015
22 Oct 2010 06:59:58 -0.030 + 0.012 -0.038 £ 0.008  0.007 + 0.014
22 Oct 2010 07:02:05 -0.033 £ 0.012 -0.048 + 0.008  0.015 £ 0.015
22 Oct 2010 07:04:14 -0.038 £ 0.012 -0.027 + 0.009 -0.012 £+ 0.015
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Table C.3 — continued from previous page

Date  Time” 1% V-T
(UT) (Relative) (Interpolated)
22 Oct 2010 07:06:22 -0.040 £ 0.012 -0.023 + 0.009 -0.017 £ 0.015
22 Oct 2010 07:08:30 -0.062 £ 0.012 -0.027 £ 0.009 -0.035 £ 0.015
22 Oct 2010 07:10:37 -0.048 £ 0.012 -0.025 £+ 0.009 -0.023 £ 0.015
22 Oct 2010 07:12:46 -0.033 £ 0.012 -0.032 + 0.009 -0.002 £+ 0.015
22 Oct 2010 07:14:54 -0.047 £ 0.012 -0.032 £ 0.009 -0.016 £ 0.015
22 Oct 2010 07:21:04 -0.053 £ 0.012 -0.034 £ 0.009 -0.019 £ 0.015
22 Oct 2010 07:23:12 -0.046 £+ 0.012 -0.030 + 0.009 -0.016 + 0.015
22 Oct 2010 07:25:20 -0.035 £ 0.012 -0.032 + 0.009 -0.004 + 0.015
22 Oct 2010 07:27:27 -0.074 £ 0.012 -0.038 £+ 0.009 -0.036 + 0.015
22 Oct 2010 07:29:34 -0.061 + 0.012 -0.042 + 0.009 -0.020 + 0.015
22 Oct 2010 07:31:43 -0.022 £ 0.012 -0.041 £ 0.009  0.018 £+ 0.015
22 Oct 2010 07:33:51 -0.068 £ 0.012 -0.034 + 0.009 -0.035 £ 0.015
22 Oct 2010 07:35:59 -0.045 £+ 0.012 -0.036 + 0.009 -0.010 £+ 0.015
22 Oct 2010 07:38:08 -0.049 + 0.012 -0.039 + 0.009 -0.011 £+ 0.015
22 Oct 2010 07:40:15 -0.031 £ 0.012 -0.045 + 0.009  0.014 £ 0.015
22 Oct 2010 07:42:31 -0.048 £ 0.012 -0.043 £+ 0.009 -0.005 £ 0.015
22 Oct 2010 07:44:40 -0.044 £+ 0.012 -0.033 £ 0.009 -0.011 £ 0.015
22 Oct 2010 07:46:48 -0.034 £ 0.012 -0.024 + 0.009 -0.011 £+ 0.015
22 Oct 2010 07:48:56 -0.052 £ 0.012 -0.031 + 0.009 -0.021 £ 0.015
22 Oct 2010 07:51:04 -0.048 £ 0.012 -0.045 + 0.009 -0.004 £+ 0.015
22 Oct 2010 07:53:11 -0.029 £+ 0.012 -0.045 + 0.009  0.015 £ 0.015
22 Oct 2010 07:55:18 -0.015 £ 0.012 -0.044 + 0.009  0.029 + 0.015
22 Oct 2010 07:57:26 -0.058 £+ 0.012 -0.038 + 0.009 -0.021 £ 0.015
22 Oct 2010 07:59:34 -0.058 £+ 0.012 -0.034 + 0.009 -0.024 + 0.016
22 Oct 2010 08:01:42 -0.052 £ 0.012 -0.042 + 0.009 -0.011 £ 0.015
22 Oct 2010 08:04:12 -0.044 + 0.012 -0.059 + 0.010  0.015 £+ 0.016
22 Oct 2010 08:06:19 -0.058 + 0.012 -0.053 + 0.010 -0.005 + 0.016
22 Oct 2010 08:08:27 -0.028 + 0.012 -0.034 + 0.010  0.006 + 0.016
22 Oct 2010 08:10:35  0.002 + 0.013 -0.022 + 0.010  0.024 + 0.016
22 Oct 2010 08:12:44 -0.025 £ 0.012 -0.020 + 0.010 -0.006 + 0.016
22 Oct 2010 08:14:53 -0.011 £ 0.012 -0.016 + 0.010  0.004 + 0.016
22 Oct 2010 08:17:00 -0.008 £ 0.012 -0.011 + 0.010  0.003 £+ 0.016
22 Oct 2010 08:19:07 -0.047 £ 0.012 -0.014 + 0.010 -0.034 + 0.016
22 Oct 2010 08:21:15 -0.018 £ 0.012 -0.017 + 0.010 -0.001 £ 0.016
22 Oct 2010 08:23:24 -0.061 + 0.012 -0.036 + 0.010 -0.025 + 0.016

Note: These data are plotted in Figure 3.5.
¢ Times have been corrected for light travel time between the object and the observer.

Table C.4: 2207 Antenor: V — I Color Variation for Partial Light Curve

Date  Time® 1% 1 V-1
(UT) (Relative) (Interpolated)

16 Nov 2011 23:38:31 -0.007 £ 0.008 -0.020 + 0.014 0.014 + 0.016
16 Nov 2011 23:45:17 0.003 £ 0.007 0.016 £ 0.011 -0.012 + 0.013
16 Nov 2011 23:52:03 -0.006 £+ 0.006 0.015 £+ 0.009 -0.021 + 0.011
16 Nov 2011 23:58:50 -0.007 £ 0.006 0.009 £+ 0.008 -0.015 + 0.010
17 Nov 2011 00:05:36  0.013 £ 0.006 0.017 £+ 0.008 -0.004 + 0.010
17 Nov 2011 00:12:22 -0.010 £ 0.006  0.019 £+ 0.009 -0.029 + 0.011
17 Nov 2011 00:19:08  0.008 £+ 0.006 -0.002 + 0.008 0.011 + 0.010
17 Nov 2011 00:25:55  0.005 £ 0.006 0.012 £ 0.009 -0.006 £ 0.011
17 Nov 2011 00:32:41  0.041 £ 0.006 0.017 £ 0.009 0.025 + 0.011
17 Nov 2011 00:39:26  0.036 £ 0.007  0.040 £+ 0.009 -0.003 + 0.011
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Table C.4 — continued from previous page

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
17 Nov 2011 00:46:12  0.063 £ 0.007  0.065 £ 0.009 -0.002 + 0.011
17 Nov 2011 00:52:58  0.079 £ 0.007  0.090 + 0.010 -0.010 £ 0.012
17 Nov 2011 00:59:44  0.088 £ 0.007  0.082 £+ 0.010  0.006 + 0.012
17 Nov 2011 01:06:30  0.100 £ 0.007  0.093 + 0.010 0.008 £ 0.012
17 Nov 2011 01:13:16  0.107 £ 0.007  0.091 + 0.010 0.016 + 0.012
17 Nov 2011 01:20:02  0.115 £ 0.007  0.090 + 0.010  0.025 4+ 0.012
17 Nov 2011 01:32:14  0.085 £ 0.007  0.101 £+ 0.010 -0.015 + 0.012
17 Nov 2011 01:39:00 0.069 £ 0.007  0.093 + 0.010 -0.024 £ 0.012
17 Nov 2011 01:45:46  0.082 £+ 0.007 0.076 + 0.010 0.006 + 0.012
17 Nov 2011 01:52:33  0.052 £ 0.007  0.058 + 0.010 -0.006 + 0.012
17 Nov 2011  02:26:06  0.055 £ 0.008 0.028 + 0.011  0.027 + 0.014
17 Nov 2011 02:32:53  0.077 £ 0.008 0.064 + 0.012 0.013 + 0.014
17 Nov 2011 02:39:42  0.093 £ 0.009 0.067 + 0.012  0.026 + 0.015
29 Sept 2012 00:54:57  0.031 + 0.018 0.002 £+ 0.012  0.029 £ 0.022
29 Sept 2012 01:02:01  0.092 + 0.018 -0.006 + 0.012  0.099 + 0.022
29 Sept 2012 01:09:05 -0.045 + 0.016 -0.046 + 0.012  0.001 + 0.020
29 Sept 2012 01:16:10 -0.080 + 0.015 -0.086 + 0.011  0.007 £+ 0.019
29 Sept 2012 01:23:15 -0.069 + 0.015 -0.100 £ 0.011  0.032 £+ 0.018
29 Sept 2012 01:32:07 -0.091 + 0.014 -0.101 + 0.010 0.010 + 0.017
29 Sept 2012 01:39:12 -0.082 + 0.015 -0.108 £ 0.011  0.027 £+ 0.018
29 Sept 2012 01:46:17 -0.039 + 0.016 -0.096 + 0.011  0.057 £+ 0.019
29 Sept 2012 01:53:22 -0.091 + 0.014 -0.092 + 0.010  0.001 £ 0.017
29 Sept 2012  02:00:26 -0.143 + 0.013 -0.100 £+ 0.010 -0.043 + 0.016
29 Sept 2012 02:07:46 -0.098 + 0.014 -0.094 + 0.010 -0.004 + 0.018
29 Sept 2012 02:14:50 -0.080 + 0.015 -0.083 + 0.011  0.004 + 0.019
29 Sept 2012 02:21:55 -0.085 + 0.015 -0.068 + 0.011 -0.017 £+ 0.019
29 Sept 2012 02:28:59 -0.027 + 0.015 -0.041 + 0.011  0.014 £+ 0.019
29 Sept 2012 02:36:04 -0.011 + 0.015 -0.019 £ 0.011  0.008 + 0.019
29 Sept 2012 03:21:14 0.121 + 0.016  0.078 £ 0.011  0.044 + 0.020
29 Sept 2012 03:28:18  0.025 + 0.015 0.037 £ 0.011 -0.012 £+ 0.019
29 Sept 2012 03:35:22 -0.037 + 0.014 -0.003 + 0.011 -0.034 + 0.018
29 Sept 2012 03:42:27 -0.037 + 0.014 -0.022 + 0.011 -0.015 £+ 0.018
29 Sept 2012 03:49:32 -0.044 + 0.014 -0.025 £+ 0.011 -0.018 + 0.018
29 Sept 2012 04:15:23  0.010 + 0.014 -0.038 + 0.010  0.049 + 0.017
29 Sept 2012 04:22:27 -0.059 + 0.014 -0.037 + 0.010 -0.022 + 0.017
29 Sept 2012 04:29:32 -0.052 + 0.013 -0.026 + 0.010 -0.025 £ 0.017
29 Sept 2012 04:36:36 -0.011 + 0.014 -0.012 £ 0.011  0.002 £+ 0.018
29 Sept 2012 04:43:41 -0.016 + 0.014 -0.017 £ 0.011  0.001 + 0.018
29 Sept 2012 05:17:45 -0.061 + 0.014 -0.076 + 0.010 0.016 + 0.017
29 Sept 2012 05:24:50 -0.100 + 0.013 -0.100 £ 0.010  0.000 + 0.016
29 Sept 2012 05:31:55 -0.141 + 0.013 -0.126 £ 0.010 -0.015 £+ 0.016
29 Sept 2012 05:38:59 -0.121 + 0.014 -0.154 + 0.010 0.033 + 0.017
29 Sept 2012 05:46:04 -0.172 + 0.017 -0.182 + 0.010 0.010 £+ 0.020

Note:

These data are plotted in Figure 3.7.

% Times have been corrected for light travel time between the object and the observer.

Table C.5: 2357 Phereclos: V' — I Color Variation for Partial Light Curve

Date  Time® V I V-1
(UT) (Relative) (Interpolated)
8 Sept 2011 06:23:43 -0.020 £ 0.014 -0.006 + 0.000 -0.014 + 0.014
8 Sept 2011 06:42:41 -0.025 + 0.018 -0.007 £+ 0.022  -0.018 + 0.029
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Table C.5 — continued from previous page
1

Date  Time” V V-1
(UT) (Relative) (Interpolated)
8 Sept 2011 07:08:38 -0.031 £ 0.021 -0.022 + 0.010 -0.009 £ 0.023
8 Sept 2011  07:17:17 -0.002 + 0.014 -0.020 £+ 0.009 0.018 + 0.017
8 Sept 2011  07:25:55 -0.011 £+ 0.014 -0.014 + 0.009 0.003 £ 0.017
8 Sept 2011 07:34:33 -0.006 + 0.014 -0.010 + 0.010 0.004 + 0.017
8 Sept 2011  07:44:39  0.010 £+ 0.023  0.008 £+ 0.010 0.002 £+ 0.025
8 Sept 2011  07:53:18 -0.031 + 0.014 0.045 + 0.013  -0.076 £+ 0.019
8 Sept 2011  08:01:57  0.004 + 0.015 -0.005 £+ 0.009 0.009 £ 0.017
8 Sept 2011  08:10:35  0.016 £ 0.013 -0.010 £ 0.009 0.026 + 0.016
8 Sept 2011 08:19:14  0.008 £+ 0.013 -0.016 + 0.012 0.024 + 0.018
8 Sept 2011  08:28:06  0.014 £+ 0.022 -0.001 + 0.026 0.015 + 0.034
8 Sept 2011 08:36:44  0.018 + 0.019 -0.006 + 0.009 0.025 + 0.021
8 Sept 2011  08:45:23  0.009 + 0.010 0.016 + 0.009  -0.007 £+ 0.013
8 Sept 2011  08:54:48  0.012 + 0.008 0.023 + 0.008 -0.011 + 0.011
8 Sept 2011  09:03:28  0.008 £+ 0.007  0.007 4+ 0.008 0.001 + 0.011
8 Sept 2011 09:12:06  0.008 £+ 0.007  0.026 + 0.007  -0.018 £+ 0.010
8 Sept 2011  09:20:45 0.014 + 0.006  0.034 + 0.009  -0.019 + 0.011
8 Sept 2011  09:29:24  0.039 £+ 0.013 -0.008 + 0.023 0.047 £ 0.026
8 Sept 2011  09:38:03 -0.036 + 0.011 -0.049 + 0.037 0.014 + 0.038
3 Oct 2012 02:17:19 -0.003 £ 0.014 0.007 £ 0.012  -0.010 £ 0.018
3 Oct 2012 02:23:38 -0.001 + 0.014 -0.008 £+ 0.012 0.008 + 0.018
3 Oct 2012 02:29:56  0.000 £+ 0.014 -0.008 + 0.012 0.008 + 0.018
3 Oct 2012 02:36:15  0.025 £ 0.014  0.003 £+ 0.011 0.023 + 0.018
3 Oct 2012 02:42:33 -0.009 + 0.014 0.013 £ 0.012  -0.021 + 0.018
3 Oct 2012 02:52:33 -0.020 + 0.015 -0.000 £+ 0.012  -0.019 + 0.019
3 Oct 2012 02:58:51 -0.013 £ 0.016  0.002 £ 0.012  -0.014 + 0.020
3 Oct 2012 03:05:10 -0.010 £ 0.015 0.007 £ 0.013  -0.017 £ 0.020
3 Oct 2012 03:11:28 -0.028 + 0.014 0.005 + 0.012  -0.033 + 0.018
3 Oct 2012 03:17:47 -0.029 £ 0.014 0.005 £ 0.012  -0.034 + 0.018
3 Oct 2012 03:27:31 -0.016 + 0.014 -0.009 + 0.012  -0.007 + 0.018
3 Oct 2012 03:33:49 0.001 £+ 0.014 -0.008 £ 0.012 0.009 + 0.018
3 Oct 2012 03:40:07 -0.030 £ 0.015 -0.009 £+ 0.012  -0.021 £ 0.019
3 Oct 2012 03:46:26 -0.021 + 0.014 -0.016 + 0.012  -0.005 + 0.018
3 Oct 2012 03:52:45 -0.016 + 0.014 -0.006 + 0.012  -0.010 + 0.018
3 Oct 2012 04:02:24 0.022 £ 0.014 0.012 £ 0.012 0.010 + 0.018
3 Oct 2012 04:08:43 0.010 £ 0.014 0.002 £+ 0.011 0.008 + 0.018
3 Oct 2012 04:15:01 -0.006 + 0.014 -0.004 + 0.012  -0.002 + 0.018
3 Oct 2012 04:21:20  0.003 £+ 0.017 -0.005 £ 0.013 0.008 + 0.021
3 Oct 2012 04:27:38 -0.020 £ 0.015 -0.003 + 0.013  -0.016 + 0.020
3 Oct 2012 04:37:04 0.019 £ 0.015 0.014 + 0.013 0.005 £+ 0.020
3 Oct 2012 04:43:22  0.009 £ 0.017 0.028 £ 0.014  -0.019 + 0.022
3 Oct 2012 05:02:54  0.011 £ 0.014  0.010 £ 0.012 0.001 £+ 0.018
3 Oct 2012 05:09:12 -0.016 + 0.014 -0.005 + 0.011  -0.010 + 0.018
3 Oct 2012 05:15:31 -0.005 + 0.014 -0.005 £+ 0.011 0.000 + 0.018
3 Oct 2012 05:21:49 0.001 £ 0.014 -0.009 £+ 0.011 0.010 + 0.018
3 Oct 2012 05:28:07 -0.018 £ 0.014 -0.011 £ 0.011  -0.007 £+ 0.018
3 Oct 2012 05:37:14 -0.010 £ 0.014 -0.010 £ 0.012  -0.000 + 0.018
3 Oct 2012 05:43:33 -0.001 £ 0.014 -0.012 £ 0.012 0.011 + 0.018
3 Oct 2012 05:49:51  0.001 £+ 0.014 -0.009 + 0.011 0.010 + 0.018
3 Oct 2012 05:56:10 0.010 + 0.015 -0.003 £+ 0.012 0.014 + 0.019
3 Oct 2012 06:02:28 0.004 £ 0.015 -0.010 £ 0.012 0.014 + 0.019
3 Oct 2012 06:11:52 -0.010 £ 0.015 -0.004 + 0.012  -0.005 + 0.019
3 Oct 2012 06:18:11  0.001 £+ 0.015 -0.006 + 0.012 0.007 £ 0.019
3 Oct 2012 06:24:30 0.012 + 0.015 -0.011 £+ 0.012 0.023 + 0.019
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Table C.5 — continued from previous page
1

Date  Time® V V-1
(UT) (Relative) (Interpolated)

3 Oct 2012 06:30:48 -0.005 £ 0.015 -0.012 £ 0.012 0.007 + 0.019
3 Oct 2012 06:37:07 -0.018 £ 0.015 -0.008 £ 0.012  -0.009 £ 0.019
3 Oct 2012 06:46:35 -0.003 £+ 0.015 -0.003 £ 0.012 0.000 £+ 0.019
3 Oct 2012 06:52:53  0.035 £ 0.017 -0.001 £ 0.013 0.036 + 0.021
3 Oct 2012 06:59:11  0.005 + 0.018 0.001 + 0.013 0.004 + 0.022
3 Oct 2012 07:05:31  0.015 £ 0.016 0.018 £ 0.013  -0.002 £ 0.020
3 Oct 2012 07:11:49 -0.003 £ 0.017 0.008 £ 0.012  -0.010 + 0.021
3 Oct 2012 07:21:14  0.009 + 0.017 -0.000 £+ 0.013 0.009 + 0.021
3 Oct 2012 07:27:33 0.012 +£ 0.017 0.022 + 0.013  -0.010 + 0.022
3 Oct 2012 07:33:51  0.047 +£ 0.019  0.032 £ 0.014 0.015 + 0.023
3 Oct 2012 07:40:09 0.004 + 0.025 -0.002 + 0.014 0.007 £ 0.029
3 Oct 2012 07:46:30 0.042 £ 0.020 0. 009 i 0.016 0.034 + 0.026
8 Nov 2013 02:03:42 -0.024 + 0.011 R

8 Nov 2013 02:14:34 -0.015 £ 0.008

8 Nov 2013 02:25:14 -0.011 £ 0.007

8 Nov 2013 02:42:34 -0.031 £ 0.009

8 Nov 2013 02:53:13 -0.024 £ 0.010

8 Nov 2013  03:04:06 -0.024 £+ 0.007

8 Nov 2013 03:14:47 -0.013 £ 0.007

8 Nov 2013 03:25:38 -0.011 £ 0.009

8 Nov 2013 03:36:19  0.006 £+ 0.007

8 Nov 2013 03:52:25  0.038 £ 0.007

8 Nov 2013 04:03:19  0.053 £ 0.008

8 Nov 2013 04:14:00  0.071 £+ 0.007

8 Nov 2013 04:24:52  0.083 £ 0.007

8 Nov 2013 04:35:32  0.084 £ 0.007

8 Nov 2013 04:46:24  0.090 £+ 0.007

8 Nov 2013 05:02:30  0.071 £ 0.007

8 Nov 2013 05:13:23  0.111 £ 0.007

8 Nov 2013  05:24:15  0.107 £+ 0.007

8 Nov 2013  05:34:55  0.088 £ 0.007

8 Nov 2013 05:45:47  0.071 £+ 0.006

8 Nov 2013 05:56:27  0.048 £ 0.006

8 Nov 2013 06:14:04  0.008 £+ 0.006

8 Nov 2013 06:24:46 -0.016 £ 0.006

8 Nov 2013 06:35:26 -0.030 £+ 0.006

8 Nov 2013 06:46:06 -0.044 £+ 0.006

8 Nov 2013  06:56:46 -0.058 £ 0.006

8 Nov 2013 07:07:27 -0.093 £ 0.006

8 Nov 2013 07:24:52 -0.052 £+ 0.006

8 Nov 2013 07:35:44 -0.050 £ 0.006

8 Nov 2013 07:46:24 -0.035 £ 0.006

8 Nov 2013 07:57:05 -0.036 £ 0.006

8 Nov 2013 08:07:57 -0.032 £+ 0.006

8 Nov 2013 08:18:36 -0.034 £+ 0.006

8 Nov 2013 08:34:42 -0.042 + 0.006

8 Nov 2013 08:45:23 -0.043 £+ 0.006

8 Nov 2013 08:56:04 -0.032 £ 0.007

8 Nov 2013  09:06:44 -0.041 £+ 0.007

8 Nov 2013 09:17:24 -0.014 £+ 0.007

8 Nov 2013 09:28:16 -0.008 £ 0.007

8 Nov 2013 09:45:04 -0.013 £ 0.007

8 Nov 2013 09:55:56  -0.014 + 0.007
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Table C.5 — continued from previous page
1

Date  Time® V —
(UT) (Relative) (Interpolated)
8 Nov 2013 10:06:36 -0.018 £ 0.007 Ce
8 Nov 2013 10:17:17 -0.011 £+ 0.007
8 Nov 2013  10:27:57 -0.000 £+ 0.007
8 Nov 2013 10:38:38 -0.000 + 0.009

Note: These data are plotted in Figure 3.9.
¢ Times have been corrected for light travel time between the object and the observer.

Table C.6: 2920 Automedon: V — I Color Variation for Partial Light Curve

Date  Time” V 1 V-1
(UT) (Relative) (Interpolated)
13 Dec 2011 04:45:01 -0.001 £ 0.016 0.074 + 0.024 -0.075 + 0.029
13 Dec 2011 04:47:18 0.033 £ 0.016  0.055 + 0.017 -0.023 + 0.023
13 Dec 2011 04:49:35 0.050 £ 0.016  0.037 + 0.013  0.013 + 0.021
13 Dec 2011 04:51:53 0.032 £ 0.016 0.025 £ 0.013  0.007 £ 0.021
13 Dec 2011 04:54:11  0.051 £ 0.016  0.021 + 0.013  0.030 + 0.021
13 Dec 2011 04:56:29  0.005 £ 0.016  0.024 + 0.013  -0.019 + 0.021
13 Dec 2011 04:58:47  0.024 £ 0.016 0.035 + 0.013 -0.011 + 0.021
13 Dec 2011 05:01:04 0.026 £ 0.016  0.042 + 0.013 -0.016 + 0.021
13 Dec 2011 05:03:22  0.002 £ 0.016  0.041 + 0.013 -0.039 + 0.021
13 Dec 2011 05:05:40 0.058 £ 0.016 0.034 £ 0.013  0.024 £ 0.021
13 Dec 2011 05:07:57  0.031 £ 0.016 0.006 + 0.013  0.025 + 0.021
13 Dec 2011 05:10:14 -0.013 £ 0.015 0.002 + 0.013  -0.015 + 0.020
13 Dec 2011 05:12:33 -0.000 £ 0.016  0.019 + 0.013 -0.019 + 0.021
13 Dec 2011 05:14:50 0.028 £ 0.016 0.010 £ 0.013  0.018 £ 0.021
13 Dec 2011 05:17:07  0.007 £ 0.016  0.004 + 0.013  0.003 + 0.021
13 Dec 2011 05:19:26  0.002 £ 0.016 0.010 £ 0.013  -0.008 £ 0.021
13 Dec 2011 05:21:43 -0.013 £ 0.016  0.022 + 0.013 -0.035 + 0.021
13 Dec 2011 05:24:00 0.019 £ 0.016  0.024 + 0.013  -0.005 + 0.021
13 Dec 2011 05:26:18 0.034 £ 0.016  0.035 + 0.013  -0.001 + 0.021
13 Dec 2011 05:28:35 0.010 £ 0.016 0.030 £ 0.014 -0.020 £ 0.021
13 Dec 2011 05:30:53 -0.016 £ 0.016  0.012 + 0.013 -0.028 + 0.021
13 Dec 2011 05:33:16  0.003 £ 0.016  0.009 + 0.013 -0.006 + 0.021
13 Dec 2011 05:35:34  0.033 £ 0.016 -0.000 + 0.013  0.033 + 0.021
13 Dec 2011 05:37:52 -0.016 £ 0.016 -0.000 + 0.013 -0.016 + 0.021
13 Dec 2011 05:40:10 -0.028 £ 0.016  0.011 + 0.013  -0.039 + 0.021
13 Dec 2011 05:42:27 -0.014 £ 0.016  0.015 + 0.013  -0.029 + 0.021
13 Dec 2011 05:44:49  0.002 £ 0.016 -0.002 + 0.013  0.004 + 0.021
13 Dec 2011 05:47:07  0.001 £ 0.016 -0.030 + 0.013  0.031 + 0.021
13 Dec 2011 05:49:25 -0.009 + 0.016 -0.061 + 0.013  0.052 + 0.021
13 Dec 2011 05:51:43 -0.017 £ 0.016 -0.062 + 0.013  0.045 + 0.021
13 Dec 2011 05:54:01 -0.027 £ 0.016 -0.039 + 0.013  0.012 + 0.021
13 Dec 2011 05:56:23 -0.005 £+ 0.016 -0.022 + 0.013  0.017 + 0.021
13 Dec 2011 05:58:41 0.006 £ 0.016 -0.012 £ 0.013  0.018 £ 0.021
13 Dec 2011 06:00:58  0.031 + 0.016 -0.040 + 0.013  0.071 + 0.020
13 Dec 2011 06:03:16 -0.005 £ 0.016 -0.051 £ 0.012  0.046 £+ 0.020
13 Dec 2011 06:05:34 -0.063 + 0.015 -0.021 + 0.013  -0.042 + 0.020
13 Dec 2011 06:07:52 -0.044 + 0.015 -0.035 + 0.013  -0.009 + 0.020
13 Dec 2011 06:10:09 -0.010 + 0.016 -0.038 + 0.012  0.028 + 0.020
13 Dec 2011 06:12:27 -0.023 £ 0.016 -0.022 £ 0.013 -0.001 £ 0.021
13 Dec 2011 06:14:49 -0.050 + 0.015 -0.020 + 0.013  -0.031 + 0.020
13 Dec 2011 06:17:07 -0.042 + 0.016 -0.024 + 0.013 -0.018 + 0.021
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Table C.6 — continued from previous page

Date  Time” 1% V—-T
(UT) (Relative) (Interpolated)
13 Dec 2011 06:19:24 -0.049 £+ 0.016 -0.028 + 0.013 -0.021 + 0.021
13 Dec 2011 06:21:42 -0.036 £ 0.016 -0.030 + 0.013 -0.006 + 0.021
23 Feb 2013 00:00:41  0.009 + 0.016 -0.006 + 0.012  0.014 + 0.020
23 Feb 2013 00:08:55 -0.016 + 0.011 -0.008 £+ 0.010 -0.009 + 0.015
23 Feb 2013 00:17:09 0.004 + 0.011 -0.002 £ 0.010  0.006 £+ 0.015
23 Feb 2013 00:26:52 -0.009 + 0.013  0.004 + 0.014 -0.013 £+ 0.019
23 Feb 2013 00:33:27  0.010 + 0.014 0.012 + 0.020 -0.002 + 0.024
23 Feb 2013 00:40:01 -0.032 + 0.025 0.005 £ 0.023 -0.037 £+ 0.034
23 Feb 2013 00:49:09 0.001 + 0.012 -0.021 £ 0.017  0.022 £+ 0.021
23 Feb 2013 00:57:23 -0.003 + 0.009 -0.010 + 0.010  0.007 £+ 0.013
23 Feb 2013 01:05:38  0.026 + 0.012  0.005 £ 0.010  0.021 £ 0.016
23 Feb 2013 01:14:58 0.011 + 0.010 0.015 £ 0.011  -0.005 £+ 0.015
23 Feb 2013 01:23:13 -0.000 + 0.015 0.023 + 0.011  -0.024 + 0.019
23 Feb 2013 23:41:41 0.035 + 0.014 0.040 + 0.015 -0.005 + 0.021
23 Feb 2013 23:49:17  0.021 + 0.013  0.037 £ 0.013 -0.016 £+ 0.018
23 Feb 2013 23:56:51  0.025 + 0.013  0.038 £ 0.012 -0.013 £+ 0.018
24 Feb 2013 00:04:26  0.037 + 0.013  0.031 + 0.012  0.006 £+ 0.018
24 Feb 2013 00:12:29 0.044 + 0.013  0.029 £+ 0.013  0.015 £+ 0.018
24 Feb 2013 00:20:03  0.029 + 0.013  0.028 + 0.012  0.002 £+ 0.018
24 Feb 2013 00:27:38  0.020 + 0.012 0.013 £ 0.012  0.008 £+ 0.017
24 Feb 2013 00:35:13  0.028 + 0.012 -0.020 + 0.012  0.049 + 0.017

Note: These data are plotted in Figure 3.11.
% Times have been corrected for light travel time between the object and the observer.

Table C.7: 3317 Paris:

V' — I Color Variation for Partial Light Curve

Date  Time® |4 I V—-1T
(UT) (Relative) (Interpolated)

27 June 2011 07:23:17 -0.010 £ 0.014 -0.022 £ 0.0I5 0.012 £+ 0.020
27 June 2011 07:32:02 -0.007 £ 0.013 -0.011 + 0.014 0.004 + 0.019
27 June 2011 07:35:49 -0.011 £ 0.013 -0.012 £ 0.014 0.001 + 0.019
27 June 2011 07:39:35 -0.004 £ 0.013 -0.001 + 0.014 -0.003 + 0.019
27 June 2011 07:43:21  0.010 £ 0.013 -0.005 + 0.017  0.015 £+ 0.021
27 June 2011 07:47:09 0.001 £ 0.013 0.006 + 0.014 -0.005 + 0.019
27 June 2011 07:50:55 -0.017 £ 0.015 0.013 £ 0.014 -0.030 + 0.021
27 June 2011 07:54:41  0.008 £ 0.014  0.026 £+ 0.014 -0.018 £ 0.020
27 June 2011 07:58:28  0.005 £ 0.013  0.035 + 0.014 -0.030 + 0.019
27 June 2011 08:02:14  0.022 £ 0.014  0.040 £+ 0.014 -0.019 + 0.020
27 June 2011 08:06:01  0.045 £ 0.014  0.045 £ 0.014  0.000 £+ 0.020
27 June 2011 08:14:16  0.052 £ 0.014  0.040 £ 0.014  0.011 £ 0.020
27 June 2011 08:18:03  0.048 £ 0.014 0.038 + 0.014 0.010 + 0.020
27 June 2011 08:21:49  0.047 £ 0.014 0.031 + 0.014 0.016 + 0.020
27 June 2011 08:25:36  0.047 £ 0.014 0.030 + 0.014 0.017 4+ 0.020
27 June 2011 08:29:23  0.022 £ 0.014 0.014 + 0.014  0.008 + 0.020
27 June 2011 08:33:09 0.025 £ 0.014 0.023 £ 0.014  0.002 £+ 0.020
27 June 2011 08:36:55  0.020 £ 0.013  0.026 + 0.014 -0.006 + 0.019
27 June 2011 08:40:42  0.020 £ 0.014 0.017 £ 0.014  0.003 £+ 0.020
27 June 2011 08:44:27 0.007 £ 0.014 0.012 £ 0.014 -0.005 £+ 0.020
27 June 2011 08:48:14 0.007 £ 0.014 0.002 £ 0.014  0.005 £+ 0.020
27 June 2011 08:53:13  0.003 £ 0.013 -0.011 + 0.014 0.013 + 0.019
27 June 2011 08:57:00 -0.002 £ 0.013 -0.010 £+ 0.013  0.008 + 0.018
27 June 2011 09:00:46 -0.011 + 0.013 -0.013 + 0.014 0.002 + 0.019
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Table C.7 — continued from previous page

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
27 June 2011 09:04:32 -0.018 £ 0.013 -0.028 + 0.013  0.010 + 0.018
27 June 2011 09:08:18 -0.018 £ 0.013 -0.036 + 0.013  0.018 + 0.018
27 June 2011 09:12:04 -0.018 £ 0.013 -0.036 + 0.013  0.018 + 0.018
27 June 2011 09:15:50 -0.028 £ 0.013 -0.039 £ 0.013  0.011 + 0.018
27 June 2011 09:19:36  -0.029 £+ 0.013 -0.028 + 0.013 -0.001 + 0.018
27 June 2011 09:23:23 -0.027 £ 0.013 -0.035 + 0.013  0.008 + 0.018
27 June 2011 09:27:08 -0.033 £ 0.013 -0.034 + 0.013  0.001 + 0.018
27 June 2011 09:42:31 -0.023 £ 0.013 -0.024 £ 0.013  0.001 + 0.018
27 June 2011 09:46:17 -0.013 £ 0.013 -0.017 + 0.013  0.004 + 0.018
27 June 2011 09:50:04 -0.017 £ 0.013 -0.018 + 0.013  0.001 + 0.018
27 June 2011 09:53:49 -0.015 £ 0.013 -0.005 + 0.013 -0.010 + 0.018
27 June 2011 09:57:36  -0.028 £ 0.013 -0.010 + 0.014 -0.018 + 0.019
27 June 2011 10:01:22 -0.018 £ 0.013 -0.004 £ 0.014 -0.014 £+ 0.019
27 June 2011 10:05:08 -0.028 £ 0.013  0.002 £+ 0.015 -0.030 %+ 0.020
27 June 2011 10:08:55 -0.016 £ 0.014  0.008 + 0.017 -0.024 + 0.022
27 June 2011 10:12:40 0.013 £ 0.015 0.006 + 0.019  0.007 + 0.024
27 June 2011 10:16:26 -0.005 £ 0.016  0.003 + 0.021 -0.008 + 0.026
9 Aug 2011 08:16:09 -0.023 + 0.023 -0.005 £+ 0.027 -0.018 £ 0.035
9 Aug 2011 08:20:24 -0.026 + 0.024 -0.010 + 0.027 -0.016 + 0.036
9 Aug 2011 08:23:12 -0.024 + 0.023 -0.012 £+ 0.027 -0.012 £ 0.035
9 Aug 2011 08:26:00 -0.012 + 0.023 -0.011 £ 0.027 -0.001 £ 0.035
9 Aug 2011 08:28:47 -0.028 + 0.023 -0.017 £+ 0.027 -0.011 £ 0.035
9 Aug 2011 08:31:35 -0.014 + 0.023 -0.021 + 0.027  0.007 £+ 0.035
9 Aug 2011 08:34:24 -0.022 + 0.024 -0.016 £+ 0.026 -0.006 £+ 0.036
9 Aug 2011 08:37:13 -0.015 + 0.024 -0.017 £ 0.027 0.002 £+ 0.036
9 Aug 2011 08:40:01 -0.022 + 0.024 -0.023 + 0.027 0.001 £ 0.036
9 Aug 2011 08:42:50 -0.022 + 0.024 -0.019 + 0.027 -0.003 + 0.036
9 Aug 2011 08:45:38 -0.022 + 0.024 -0.013 + 0.027 -0.009 + 0.036
9 Aug 2011 08:48:27 -0.016 + 0.023 -0.015 + 0.027 -0.001 £+ 0.035
9 Aug 2011 08:51:14 -0.027 + 0.024 -0.012 £+ 0.027 -0.015 £ 0.036
9 Aug 2011 08:54:02 -0.014 + 0.024 -0.012 £ 0.027 -0.002 £+ 0.036
9 Aug 2011 08:56:50 -0.007 £+ 0.024 -0.015 + 0.027 0.008 + 0.036
9 Aug 2011 08:59:38  0.012 + 0.024 -0.008 + 0.027 0.020 + 0.036
9 Aug 2011 09:02:26  0.004 + 0.024 -0.003 £+ 0.027 0.007 £+ 0.036
9 Aug 2011 09:12:32  0.002 + 0.024 -0.001 £+ 0.027 0.003 £+ 0.036
9 Aug 2011 09:15:21  0.012 £+ 0.024 -0.002 + 0.027 0.014 + 0.036
9 Aug 2011 09:18:10  0.009 + 0.024 -0.001 + 0.028 0.010 + 0.037
9 Aug 2011 09:20:58 -0.005 + 0.024 -0.005 + 0.027  0.000 + 0.036
9 Aug 2011 09:23:46 -0.007 + 0.024 -0.009 + 0.027 0.002 £+ 0.036
9 Aug 2011 09:26:34 -0.008 + 0.024 -0.013 £ 0.027 0.005 £+ 0.036
9 Aug 2011 09:29:23 -0.018 + 0.024 -0.008 £+ 0.027 -0.010 £+ 0.036
9 Aug 2011 09:32:11  0.002 + 0.024 0.004 + 0.027 -0.002 + 0.036
9 Aug 2011 09:34:59 -0.004 + 0.024 0.008 + 0.027 -0.012 £+ 0.036
9 Aug 2011 09:37:48 0.009 + 0.025 0.007 £+ 0.027 0.002 + 0.037
9 Aug 2011 09:40:36  0.010 + 0.025 0.008 + 0.028  0.002 + 0.037
9 Aug 2011 09:43:25 0.027 + 0.025 0.014 £ 0.028 0.013 £+ 0.038
9 Aug 2011 09:46:13  0.019 + 0.025 0.020 £ 0.028 -0.001 £ 0.038
9 Aug 2011 09:49:02 0.037 £ 0.026  0.031 + 0.028 0.006 + 0.038
9 Aug 2011 09:51:50  0.055 + 0.026  0.047 £ 0.029 0.008 £+ 0.039
9 Aug 2011 09:54:38  0.083 + 0.027 0.054 £ 0.029 0.029 £ 0.040
9 Aug 2011 09:59:10  0.080 + 0.028  0.050 + 0.031  0.030 + 0.041
9 Aug 2011 10:01:58  0.051 + 0.031  0.042 + 0.033  0.009 + 0.045
9 Aug 2011 10:04:47 0.000 + 0.033 0.025 + 0.036 -0.025 + 0.049
C
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Table C.7 — continued from previous page
I

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
9 Aug 2011 10:07:34 -0.032 + 0.036 -0.019 £ 0.041 -0.013 £ 0.055
9 Aug 2011 10:10:23 -0.048 + 0.044 -0.087 + 0.047  0.039 + 0.064

Note: These data are plotted in Figure 3.135.
¢ Times have been corrected for light travel time between the object and the observer.

Table C.8: 3451 Mentor: V — I Color Variation for Partial Light Curve

Date  Time? Vv I V-1
(UT) (Relative) (Interpolated)

14 Aug 2011 04:47:27 0.010 £ 0.025 0.072 £ 0.021 -0.062 £ 0.033
14 Aug 2011 04:52:54 -0.011 + 0.025 -0.018 + 0.021  0.007 + 0.033
14 Aug 2011 04:55:40 -0.030 £+ 0.025 -0.026 + 0.021 -0.004 + 0.033
14 Aug 2011 05:26:19 -0.090 £+ 0.024 -0.150 + 0.020 0.060 + 0.031
14 Aug 2011 05:29:05 -0.094 + 0.023 -0.136 + 0.019  0.042 £+ 0.030
14 Aug 2011 05:31:51 -0.129 + 0.022 -0.168 + 0.019  0.040 + 0.029
14 Aug 2011 05:34:38 -0.109 + 0.022 -0.175 + 0.018  0.067 + 0.028
14 Aug 2011 05:37:24 -0.134 + 0.021 -0.176 + 0.018  0.043 + 0.028
14 Aug 2011 05:40:10 -0.195 + 0.021 -0.205 + 0.018  0.011 + 0.028
14 Aug 2011 05:42:57 -0.187 + 0.021 -0.228 + 0.018  0.042 + 0.028
14 Aug 2011 05:45:42 -0.184 + 0.021 -0.208 + 0.018  0.025 + 0.028
14 Aug 2011 05:48:29 -0.193 + 0.021 -0.210 + 0.018 0.017 + 0.028
14 Aug 2011 05:51:15 -0.221 + 0.021 -0.219 + 0.018 -0.002 + 0.028
14 Aug 2011 05:54:01 -0.211 £+ 0.021 -0.216 + 0.018  0.006 + 0.028
14 Aug 2011 05:56:47 -0.209 + 0.021 -0.215 £+ 0.018 0.006 + 0.028
14 Aug 2011 05:59:32 -0.221 + 0.021 -0.219 + 0.018 -0.002 + 0.028
14 Aug 2011 06:02:19 -0.195 + 0.021 -0.203 + 0.018  0.008 + 0.028
14 Aug 2011 06:05:04 -0.201 + 0.021 -0.222 + 0.018 0.021 + 0.028
14 Aug 2011 06:07:50 -0.207 + 0.021 -0.195 + 0.018 -0.011 + 0.028
14 Aug 2011 06:10:43 -0.194 + 0.021 -0.208 + 0.018 0.014 + 0.028
14 Aug 2011 06:13:28 -0.182 + 0.022 -0.176 + 0.018 -0.006 + 0.028
14 Aug 2011 06:16:14 -0.169 + 0.022 -0.171 + 0.018  0.002 + 0.028
14 Aug 2011 06:19:01 -0.165 + 0.021 -0.161 + 0.019 -0.004 + 0.028
14 Aug 2011 06:21:47 -0.167 + 0.022 -0.153 £ 0.018 -0.014 + 0.029
14 Aug 2011 06:24:33 -0.123 + 0.022 -0.162 + 0.021  0.040 £ 0.030
14 Aug 2011 06:27:19 -0.137 £+ 0.023 -0.109 + 0.026 -0.027 + 0.035
14 Aug 2011 06:30:04 -0.170 + 0.030 -0.124 £+ 0.024 -0.046 + 0.038
14 Aug 2011 06:32:50 -0.116 + 0.027 -0.111 + 0.019 -0.005 + 0.033
14 Aug 2011 06:35:35 -0.064 + 0.022 -0.091 + 0.019 0.028 £+ 0.029
14 Aug 2011 06:38:21 -0.060 + 0.023 -0.062 + 0.019  0.002 £+ 0.030
14 Aug 2011 06:41:07 -0.027 + 0.023 -0.045 + 0.020 0.019 £ 0.030
14 Aug 2011 06:43:53  0.015 £+ 0.023 -0.015 + 0.020  0.030 + 0.030
14 Aug 2011 06:46:39 -0.009 £+ 0.024 0.001 + 0.020 -0.010 + 0.031
14 Aug 2011 06:49:25 0.058 + 0.024 0.031 £+ 0.021  0.027 £ 0.032
14 Aug 2011 06:52:11  0.066 + 0.024  0.058 + 0.021  0.008 + 0.032
14 Aug 2011 06:55:08  0.094 + 0.024 0.083 + 0.021  0.011 + 0.032
14 Aug 2011 06:57:55  0.120 + 0.024  0.095 + 0.021  0.025 + 0.032
14 Aug 2011 07:00:40 0.130 £ 0.025 0.141 + 0.022 -0.011 + 0.033
14 Aug 2011 07:03:27  0.155 £ 0.026  0.165 + 0.023 -0.010 + 0.035
14 Aug 2011 07:06:12  0.194 + 0.026  0.152 + 0.022  0.042 £+ 0.034
14 Aug 2011 07:08:58 0.194 + 0.026  0.199 + 0.023 -0.004 + 0.035
14 Aug 2011 07:11:44 0.215 £ 0.026  0.213 + 0.023  0.002 + 0.035
14 Aug 2011 07:14:30  0.222 £+ 0.026  0.257 + 0.024 -0.034 + 0.035
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Table C.8 — continued from previous page

Date Time® 1% V-1
(UT) (Relative) (Interpolated)

14 Aug 2011 07:17:16  0.244 £ 0.027 0.271 + 0.025 -0.027 £ 0.037
14 Aug 2011 07:20:02  0.291 £+ 0.028 0.308 + 0.025 -0.017 £+ 0.038
14 Aug 2011 07:22:48 0.288 + 0.027 0.314 + 0.025 -0.026 + 0.037
14 Aug 2011 07:25:34  0.322 + 0.028 0.331 + 0.025 -0.009 + 0.038
14 Aug 2011 07:28:21  0.352 +£ 0.029 0.373 + 0.026 -0.021 + 0.039
14 Aug 2011 07:31:07 0.352 £ 0.029  0.390 + 0.027 -0.038 £ 0.040
14 Aug 2011 07:33:52  0.389 + 0.030  0.398 £+ 0.027 -0.009 + 0.040
14 Aug 2011 07:36:38  0.411 + 0.029  0.417 + 0.027 -0.006 + 0.040
14 Aug 2011 07:40:41  0.387 £ 0.030  0.420 + 0.027 -0.033 £ 0.040
14 Aug 2011 07:43:26  0.395 + 0.030  0.428 + 0.027 -0.033 £ 0.040
14 Aug 2011 07:46:12  0.377 £ 0.030  0.426 + 0.027 -0.049 + 0.040
14 Aug 2011 07:48:58  0.406 + 0.030  0.425 + 0.027 -0.019 + 0.040
14 Aug 2011 07:51:44 0.436 + 0.030 0.418 + 0.027 0.018 £ 0.040
14 Aug 2011 07:54:30  0.373 +£ 0.029  0.413 + 0.027 -0.040 + 0.040
14 Aug 2011 07:57:17 0.383 £ 0.030  0.376 + 0.027  0.008 + 0.040
14 Aug 2011 08:00:04 0.368 + 0.030  0.386 + 0.027 -0.017 £ 0.040
14 Aug 2011 08:02:55  0.364 + 0.029 0.362 £+ 0.026  0.002 + 0.039
14 Aug 2011 08:05:40 0.315 + 0.028 0.313 + 0.025 0.003 £ 0.038
14 Aug 2011 08:08:27  0.311 + 0.028  0.281 £+ 0.025 0.030 + 0.038
14 Aug 2011 08:24:05 0.083 + 0.026  0.103 + 0.022 -0.019 + 0.034
14 Aug 2011 08:26:51  0.040 + 0.026  0.049 + 0.022 -0.009 + 0.034
14 Aug 2011 08:29:36  0.007 + 0.026  0.054 + 0.022 -0.047 + 0.034
14 Aug 2011 08:32:22  0.046 + 0.026  0.030 + 0.021  0.017 £+ 0.033
14 Aug 2011 08:35:08 0.020 + 0.025 0.011 + 0.021  0.009 + 0.033
14 Aug 2011 08:37:54  0.030 + 0.025 -0.013 + 0.021  0.043 £ 0.033
14 Aug 2011 08:40:41 -0.044 + 0.024 -0.025 £+ 0.020 -0.018 £+ 0.031
14 Aug 2011 08:43:27 -0.045 + 0.024 -0.038 + 0.020 -0.007 £+ 0.031
14 Aug 2011 08:46:13 -0.084 + 0.024 -0.066 + 0.020 -0.017 £+ 0.031
14 Aug 2011 08:48:59 -0.081 + 0.024 -0.058 + 0.020 -0.022 + 0.031
14 Aug 2011 08:51:44 -0.094 + 0.024 -0.079 £+ 0.020 -0.014 £ 0.031
14 Aug 2011 08:54:30 -0.081 + 0.024 -0.106 + 0.019  0.025 £+ 0.031
14 Aug 2011 08:57:16 -0.128 + 0.024 -0.096 + 0.020 -0.032 £+ 0.031
14 Aug 2011 09:00:02 -0.096 + 0.024 -0.095 £+ 0.019 -0.001 + 0.031
14 Aug 2011 09:02:48 -0.103 + 0.024 -0.125 + 0.019 0.022 £ 0.031
14 Aug 2011 09:05:34 -0.147 + 0.024 -0.137 £ 0.019 -0.009 £ 0.031
14 Aug 2011 09:10:50 -0.130 + 0.023 -0.175 + 0.019  0.045 £+ 0.030
14 Aug 2011 09:13:36  -0.130 + 0.023 -0.173 + 0.019  0.044 + 0.030
14 Aug 2011 09:16:22 -0.165 + 0.023 -0.191 + 0.019  0.026 £+ 0.030
14 Aug 2011 09:19:08 -0.152 + 0.024 -0.204 + 0.018  0.053 + 0.030
14 Aug 2011 09:21:54 -0.158 + 0.023 -0.220 + 0.018  0.062 + 0.029
14 Aug 2011 09:24:40 -0.182 £+ 0.023 -0.211 + 0.019  0.030 £ 0.030
14 Aug 2011 09:27:26 -0.234 + 0.024 -0.220 £+ 0.018 -0.014 + 0.030
14 Aug 2011 09:30:12 -0.217 £+ 0.023 -0.230 + 0.018 0.013 + 0.029
14 Aug 2011 09:32:58 -0.234 £+ 0.024 -0.232 + 0.019 -0.002 + 0.031
14 Aug 2011 09:35:45 -0.208 + 0.024 -0.235 + 0.019  0.028 £+ 0.031
14 Aug 2011 09:38:31 -0.229 + 0.024 -0.234 + 0.018 0.005 £ 0.030
14 Aug 2011 09:41:17 -0.258 + 0.024 -0.228 + 0.018 -0.030 £ 0.030
14 Aug 2011 09:44:03 -0.257 + 0.025 -0.229 + 0.019 -0.028 + 0.031
14 Aug 2011 09:46:49 -0.245 + 0.026 -0.215 + 0.020 -0.029 + 0.033
14 Aug 2011 09:49:35 -0.219 £+ 0.027 -0.173 + 0.023 -0.045 + 0.036
14 Aug 2011 09:52:21 -0.163 £+ 0.032 -0.131 + 0.026 -0.031 + 0.041
30 Sept 2012 06:38:21 -0.066 + 0.022 -0.067 + 0.010  0.001 + 0.024
30 Sept 2012 06:43:25 -0.090 + 0.023 -0.079 + 0.010 -0.012 + 0.025
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Table C.8 — continued from previous page

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
30 Sept 2012 06:48:30 -0.104 + 0.023 -0.087 £ 0.010 -0.018 £ 0.025
30 Sept 2012 06:53:34 -0.134 + 0.023 -0.119 £ 0.010 -0.016 £ 0.025
30 Sept 2012 06:58:39 -0.117 + 0.024 -0.143 £+ 0.010 0.025 + 0.026
30 Sept 2012 07:03:44 -0.131 + 0.024 -0.155 £ 0.010  0.024 £+ 0.026
30 Sept 2012 07:12:54 -0.160 + 0.024 -0.183 £+ 0.010 0.022 + 0.026
30 Sept 2012 07:17:58 -0.171 + 0.025 -0.179 + 0.010 0.008 + 0.027
30 Sept 2012 07:23:03 -0.169 + 0.024 -0.198 + 0.010 0.028 + 0.026
30 Sept 2012 07:28:07 -0.195 + 0.025 -0.214 + 0.010  0.018 £ 0.027
30 Sept 2012 07:33:12 -0.220 + 0.023 -0.211 £ 0.010 -0.010 £ 0.025
30 Sept 2012 07:38:16 -0.235 + 0.023 -0.207 £ 0.010 -0.028 £ 0.025
30 Sept 2012 07:46:50 -0.222 + 0.024 -0.220 £ 0.010 -0.003 £+ 0.026
30 Sept 2012 07:51:55 -0.251 + 0.024 -0.228 + 0.010 -0.024 + 0.026
30 Sept 2012 07:57:00 -0.220 + 0.023 -0.228 + 0.011  0.007 £ 0.025
30 Sept 2012 08:02:04 -0.206 + 0.024 -0.229 + 0.010 0.022 + 0.026
30 Sept 2012 08:07:09 -0.212 + 0.025 -0.226 + 0.011  0.014 + 0.027
30 Sept 2012 08:12:14 -0.219 + 0.026 -0.214 £+ 0.011 -0.006 + 0.028
30 Sept 2012 08:20:36 -0.177 + 0.025 -0.198 £+ 0.012  0.020 £ 0.028
30 Sept 2012 08:25:41 -0.184 + 0.026 -0.179 £+ 0.012 -0.006 £+ 0.029
30 Sept 2012  08:30:45 -0.134 + 0.027 -0.154 + 0.011  0.019 £ 0.029
30 Sept 2012 08:35:50 -0.124 + 0.025 -0.135 £ 0.012  0.011 £ 0.028
30 Sept 2012 08:40:54 -0.111 + 0.024 -0.112 + 0.011  0.001 + 0.027
30 Sept 2012 08:45:59 -0.090 + 0.025 -0.100 £+ 0.012  0.009 + 0.028
30 Sept 2012  08:54:18 -0.047 + 0.029 -0.059 + 0.015 0.011 + 0.033
30 Sept 2012 08:59:22 -0.044 + 0.032 -0.030 £ 0.019 -0.014 + 0.037
30 Sept 2012 09:04:26 -0.004 + 0.041 -0.016 £ 0.024 0.011 £ 0.048
3 Oct 2012 08:07:54 -0.074 £+ 0.021 -0.054 £+ 0.013 -0.020 £+ 0.025
3 Oct 2012 08:12:12 -0.069 + 0.021 -0.068 £+ 0.013 -0.001 + 0.025
3 Oct 2012 08:16:30 -0.086 + 0.022 -0.071 + 0.013 -0.015 £+ 0.026
3 Oct 2012 08:20:49 -0.089 + 0.022 -0.081 + 0.014 -0.008 + 0.026
3 Oct 2012 08:25:07 -0.071 + 0.024 -0.092 + 0.014  0.021 £ 0.028
3 Oct 2012 08:32:05 -0.116 + 0.021 -0.108 £+ 0.015 -0.008 £ 0.026
3 Oct 2012 08:36:23 -0.143 + 0.024 -0.114 + 0.014 -0.029 + 0.028
3 Oct 2012 08:40:42 -0.097 + 0.021 -0.121 £+ 0.013  0.024 £+ 0.025
3 Oct 2012 08:45:00 -0.122 + 0.021 -0.113 £ 0.013 -0.009 + 0.025
3 Oct 2012 08:49:18 -0.078 + 0.022 -0.104 + 0.013  0.026 + 0.026
3 Oct 2012 08:56:00 -0.070 + 0.024 -0.102 + 0.015 0.032 £+ 0.028
3 Oct 2012 09:00:20 -0.132 £+ 0.027 -0.122 £ 0.018 -0.011 + 0.032
3 Oct 2012 09:04:39 -0.150 + 0.035 -0.151 + 0.021  0.001 + 0.041

Note: These data are plotted in Figure 3.15.
% Times have been corrected for light travel time between the object and the observer.

Table C.9: 3793 Leonteus: V' — I Color Variation for Partial Light Curve

Date  Time?® \% 1 V-1
(UT) (Relative) (Interpolated)

15 Nov 2011 07:00:28 -0.019 £+ 0.010 -0.007 + -0.004 -0.012 £+ 0.011
15 Nov 2011 07:07:59 -0.054 £ 0.011  -0.030 £+ 0.005 -0.025 £+ 0.012
15 Nov 2011 07:12:46 -0.022 £ 0.016 -0.044 + 0.011  0.021 £ 0.020
15 Nov 2011 07:17:32 -0.019 £+ 0.022 -0.042 £+ 0.018  0.022 + 0.028
15 Nov 2011 07:22:19 0.023 £ 0.017 -0.023 £ 0.020 0.045 £+ 0.027
15 Nov 2011 07:27:06  0.019 £ 0.025 -0.019 £+ 0.013  0.037 £ 0.028
15 Nov 2011 07:31:53 0.075 £ 0.053  0.027 £ 0.025 0.048 £+ 0.059
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Table C.9 — continued from previous page
I

Date  Time® |% V—-1T
(UT) (Relative) (Interpolated)

11 Dec 2011 06:13:06  0.001 £ 0.036  0.039 £ 0.033 -0.038 £+ 0.049
11 Dec 2011 06:15:24  0.005 £ 0.034  0.046 £+ 0.035 -0.041 £ 0.048
11 Dec 2011 06:17:41  0.043 £ 0.040  0.015 £ 0.036  0.028 + 0.054
11 Dec 2011 06:19:59 -0.023 £+ 0.037 -0.023 £+ 0.036  0.000 £+ 0.052
11 Dec 2011 06:22:16  0.043 £ 0.036 -0.033 + 0.034 0.076 + 0.050
11 Dec 2011 06:24:34  0.002 £ 0.034 -0.042 £+ 0.032  0.044 £ 0.047
11 Dec 2011 06:26:52 -0.035 + 0.032  -0.041 + 0.031  0.006 + 0.045
11 Dec 2011 06:29:09 -0.030 £+ 0.033  -0.050 + 0.031  0.020 £+ 0.045
11 Dec 2011 06:31:26 -0.081 + 0.032 -0.085 + 0.031  0.004 + 0.044
11 Dec 2011 06:33:45 -0.037 £ 0.033  -0.097 £ 0.030  0.060 £+ 0.045
11 Dec 2011 06:36:08 -0.045 + 0.032 -0.123 + 0.029 0.079 + 0.043
11 Dec 2011  06:38:26  -0.144 £+ 0.030 -0.177 £ 0.028  0.033 + 0.041
11 Dec 2011 06:40:43 -0.150 + 0.029 -0.192 + 0.028  0.042 £+ 0.040
11 Dec 2011 06:43:00 -0.154 + 0.029 -0.181 + 0.028  0.027 + 0.040
11 Dec 2011  06:45:18 -0.195 + 0.028 -0.189 + 0.028 -0.006 + 0.040
11 Dec 2011 06:47:35 -0.162 + 0.029 -0.192 + 0.028  0.030 £+ 0.040
11 Dec 2011 06:49:52 -0.197 £ 0.028 -0.185 + 0.028 -0.012 + 0.040
11 Dec 2011  06:52:10 -0.178 £+ 0.028 -0.197 + 0.029  0.019 £ 0.040
11 Dec 2011  06:54:27 -0.205 £ 0.031  -0.198 + 0.032 -0.007 £+ 0.045
11 Dec 2011 06:56:45 -0.160 £ 0.031 -0.185 + 0.031  0.025 + 0.044
11 Dec 2011  06:59:19 -0.167 £ 0.029 -0.171 + 0.028  0.004 + 0.040
11 Dec 2011 07:01:37 -0.157 £ 0.030 -0.158 + 0.028  0.001 + 0.041
11 Dec 2011 07:03:54 -0.150 £ 0.029 -0.125 + 0.029 -0.025 + 0.041
11 Dec 2011 07:06:11 -0.071 £ 0.031  -0.067 + 0.031 -0.003 + 0.044
11 Dec 2011 07:08:30 -0.083 + 0.031 -0.030 + 0.033 -0.053 + 0.045
11 Dec 2011 07:10:46 -0.006 + 0.034 -0.001 + 0.034 -0.005 + 0.048
11 Dec 2011 07:13:03  0.012 + 0.035  0.029 + 0.036 -0.016 + 0.050
11 Dec 2011 07:15:22  0.005 £ 0.045  0.044 + 0.035 -0.039 £+ 0.057
11 Dec 2011 07:17:40  0.042 + 0.035  0.053 £+ 0.036 -0.011 + 0.050
11 Dec 2011 07:19:56  0.039 + 0.036  0.064 + 0.036 -0.025 + 0.051
11 Dec 2011 07:22:19  0.052 £ 0.037  0.066 + 0.035 -0.014 + 0.051
11 Dec 2011 07:24:36  0.039 + 0.035  0.080 + 0.035 -0.041 + 0.050
11 Dec 2011 07:26:54 0.117 +£ 0.037  0.116 £+ 0.036  0.002 £+ 0.052
11 Dec 2011 07:29:11  0.089 + 0.036  0.139 + 0.037 -0.050 + 0.052
11 Dec 2011 07:31:28  0.090 £+ 0.037  0.145 £+ 0.038 -0.055 £+ 0.053
11 Dec 2011 07:33:46  0.126 + 0.037  0.138 £+ 0.038 -0.012 + 0.053
11 Dec 2011 07:36:03  0.092 + 0.037  0.161 + 0.038 -0.069 + 0.053
11 Dec 2011 07:38:21  0.150 £ 0.038  0.178 £+ 0.040 -0.028 + 0.055
11 Dec 2011 07:40:39  0.193 £ 0.041  0.175 £+ 0.040 0.018 £ 0.057
11 Dec 2011 07:42:56  0.188 +£ 0.041  0.175 + 0.039  0.014 + 0.057
11 Dec 2011 07:45:19  0.197 £ 0.041  0.178 £ 0.039  0.019 £ 0.057
11 Dec 2011 07:47:35  0.202 £ 0.041  0.200 £+ 0.040 0.003 £+ 0.058
11 Dec 2011 07:49:54  0.176 £ 0.041  0.209 + 0.041 -0.033 £+ 0.058
11 Dec 2011 07:52:12  0.254 + 0.043  0.192 + 0.041  0.062 + 0.059
11 Dec 2011 07:54:30  0.265 + 0.044  0.201 + 0.041  0.064 + 0.060
23 Feb 2013 01:45:54 -0.126 + 0.015 -0.120 + 0.016 -0.005 + 0.022
23 Feb 2013 01:53:39 -0.112 + 0.015 -0.125 + 0.015 0.014 + 0.021
23 Feb 2013 02:01:23 -0.111 + 0.017 -0.105 £+ 0.018 -0.006 + 0.024
23 Feb 2013  02:09:08 -0.048 + 0.015 -0.099 £+ 0.021  0.052 + 0.026
23 Feb 2013 02:16:54 -0.082 + 0.026 -0.089 + 0.019  0.008 + 0.033
23 Feb 2013 02:24:38  0.091 + 0.029  0.008 + 0.049 0.083 + 0.057
23 Feb 2013 02:40:08 0.073 + 0.027  0.143 £+ 0.063 -0.070 + 0.068
23 Feb 2013 02:55:26  0.163 + 0.069  0.163 + 0.074  0.000 + 0.101
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Table C.9 — continued from previous page
I

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
23 Feb 2013 03:04:01 0.085 + 0.032  0.113 £ 0.055 -0.027 + 0.063
23 Feb 2013 03:12:36  0.181 + 0.069  0.173 £ 0.065 0.008 + 0.094
23 Feb 2013 05:58:49 0.084 + 0.016  0.073 + 0.018  0.012 + 0.024
23 Feb 2013 06:07:24  0.075 + 0.023  0.063 + 0.024  0.012 + 0.033
23 Feb 2013 06:15:59 0.012 + 0.019  0.045 £ 0.019 -0.032 + 0.027
23 Feb 2013 06:24:33 -0.019 + 0.019  0.023 £ 0.021 -0.042 4+ 0.028
23 Feb 2013 06:37:41 0.048 + 0.018  0.002 + 0.027  0.046 + 0.032
23 Feb 2013 06:46:16 -0.002 + 0.017  0.009 + 0.029 -0.010 + 0.034
23 Feb 2013 06:54:50 -0.055 + 0.026  -0.007 £+ 0.023 -0.048 + 0.035
23 Feb 2013 07:03:25 -0.032 + 0.009 -0.057 £ 0.011  0.026 + 0.014
23 Feb 2013 07:16:26 -0.093 + 0.008 -0.114 + 0.011  0.021 + 0.014
23 Feb 2013 07:25:01 -0.092 + 0.010 -0.109 + 0.010 0.017 + 0.014
23 Feb 2013 07:33:35 -0.061 + 0.012 -0.107 + 0.010  0.047 + 0.016
23 Feb 2013 07:42:10 -0.084 + 0.012 -0.112 £ 0.010  0.029 + 0.016
23 Feb 2013 07:55:10 -0.058 + 0.008 -0.088 + 0.009  0.031 + 0.012
23 Feb 2013 08:03:44 -0.017 + 0.008 -0.064 + 0.010  0.047 + 0.012
23 Feb 2013 08:12:19 -0.007 + 0.011  -0.025 + 0.011  0.019 + 0.016
23 Feb 2013 08:20:53 0.072 + 0.013  0.037 £ 0.015  0.036 + 0.020
23 Feb 2013 08:33:56  0.102 + 0.024  0.098 + 0.064  0.004 + 0.068

Note: These data are plotted in Figure 3.17.
@ Times have been corrected for light travel time between the object and the observer.

Table C.10: 4709 Ennomos: V — I Color Variation for Partial Light Curve

Date  Time? 1% 1 V—-T
(UT) (Relative) (Interpolated)

5 Sept 2011 04:55:52  0.030 £ 0.017 0.043 £ 0.007 -0.013 £ 0.01I8
5 Sept 2011  05:03:40  0.035 £ 0.006  0.024 £+ 0.006 0.011 £+ 0.008
5 Sept 2011  05:11:13  0.031 £+ 0.006  0.025 £+ 0.006 0.006 = 0.008
5 Sept 2011  05:18:41  0.015 £+ 0.006 -0.021 + 0.006 0.036 + 0.008
5 Sept 2011 05:26:42 -0.005 £+ 0.005 -0.042 + 0.006 0.038 + 0.008
5 Sept 2011 05:34:02 -0.034 £+ 0.005 -0.059 + 0.006 0.025 + 0.008
5 Sept 2011  05:41:42 -0.048 £+ 0.005 -0.070 £+ 0.006 0.022 £+ 0.008
5 Sept 2011 05:48:45 -0.064 + 0.005 -0.074 4+ 0.006 0.011 + 0.008
5 Sept 2011  05:57:17 -0.066 + 0.005 -0.079 + 0.006 0.014 + 0.008
5 Sept 2011 06:06:10 -0.040 £+ 0.005 -0.054 + 0.007 0.014 £ 0.009
5 Sept 2011  06:13:14 -0.057 £+ 0.007 -0.035 + 0.011  -0.022 + 0.013
5 Sept 2011  06:20:19 -0.012 £+ 0.006 -0.008 + 0.010  -0.004 + 0.012
5 Sept 2011  06:27:43 -0.019 + 0.009 0.008 + 0.011  -0.027 £+ 0.014
5 Sept 2011  06:45:11  0.041 £+ 0.025  0.026 + 0.010 0.016 £ 0.027
5 Sept 2011  06:59:34  0.020 £+ 0.007  0.034 + 0.009  -0.014 + 0.011
5 Sept 2011  07:07:07  0.024 £ 0.006 0.085 + 0.013  -0.061 + 0.014
5 Sept 2011  07:16:43  0.062 + 0.014 0.093 + 0.015  -0.030 + 0.021
5 Sept 2011 07:23:22  0.082 £ 0.012  0.133 £ 0.026  -0.051 £+ 0.029
7 Nov 2013 10:55:37  0.106 £+ 0.007  0.026 + 0.008 0.081 + 0.011
7 Nov 2013 11:01:15 0.086 + 0.007 0.014 + 0.008 0.072 £ 0.011
7 Nov 2013 11:06:54  0.068 £+ 0.007 -0.005 £ 0.008 0.073 + 0.011
7 Nov 2013 11:12:33  0.057 £ 0.007 -0.003 £ 0.008 0.060 + 0.011
7 Nov 2013 11:18:11  0.032 £+ 0.007 -0.018 + 0.008 0.051 + 0.011
7 Nov 2013  11:23:49  0.019 £ 0.007 -0.023 £+ 0.008 0.043 + 0.011
7 Nov 2013 11:29:28  0.011 £+ 0.007 -0.025 £+ 0.008 0.036 + 0.011
7 Nov 2013 11:35:07 -0.003 £+ 0.007 -0.034 + 0.008 0.031 £ 0.011
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Table C.10 — continued from previous page

Date  Time” V -1
(UT) (Relative) (Interpolated)
7 Nov 2013 11:40:45 -0.006 £+ 0.007 -0.036 £+ 0.008 0.031 + 0.011
7 Nov 2013 11:46:24 -0.024 + 0.007 -0.027 £+ 0.008 0.004 + 0.011
7 Nov 2013 11:52:02 -0.032 £ 0.007 -0.032 £+ 0.008 -0.000 £+ 0.011
7 Nov 2013 11:57:40 -0.041 £ 0.007 -0.020 £ 0.009 -0.020 £ 0.011
7 Nov 2013 12:12:58 -0.050 £+ 0.008  0.022 £+ 0.009 -0.072 £+ 0.012
7 Nov 2013 12:18:37 -0.051 £ 0.009 0.023 + 0.011  -0.073 £ 0.014
7 Nov 2013 12:24:21 -0.074 £ 0.012 0.047 + 0.014  -0.121 £+ 0.018
7 Nov 2013  12:29:59 -0.103 £ 0.018 0.081 £ 0.018  -0.184 £ 0.025
8 Nov 2013 10:58:56  0.149 £+ 0.005 0.019 + 0.008 0.130 + 0.009
8 Nov 2013 11:09:34  0.088 £+ 0.005 0.004 + 0.007 0.084 £+ 0.009
8 Nov 2013 11:20:12  0.052 £ 0.005 0.015 £ 0.007 0.037 + 0.009
8 Nov 2013 11:30:51  0.005 £ 0.007  0.008 £+ 0.009 -0.003 £+ 0.011
8 Nov 2013 11:41:29 -0.019 £+ 0.005 -0.026 + 0.007 0.007 £ 0.009
8 Nov 2013 11:52:07 -0.061 £ 0.004 -0.037 £ 0.005 -0.024 £+ 0.006
8 Nov 2013 12:08:40 -0.097 £+ 0.005 -0.008 + 0.006  -0.089 + 0.007
8 Nov 2013 12:19:18 -0.117 £ 0.006 0.021 + 0.006  -0.138 + 0.009

Note: These data are plotted in Figure 3.19.
% Times have been corrected for light travel time between the object and the observer.

Table C.11: 4833 Meges: V — I Color Variation for Partial Light Curve

Date  Time” 1% 1 V-T
(UT) (Relative) (Interpolated)
8 Feb 2015 07:15:38 -0.008 + 0.0I5 -0.063 + 0.011 0.055 + 0.019
8 Feb 2015 07:36:16 -0.039 + 0.013 -0.070 £ 0.011 0.031 £ 0.017
8 Feb 2015 07:56:56 -0.090 + 0.013 -0.086 + 0.011 -0.004 + 0.017
8 Feb 2015 08:17:47 -0.112 £ 0.012 -0.109 + 0.010 -0.003 + 0.016
8 Feb 2015 08:38:27 -0.109 £+ 0.011 -0.087 £ 0.010 -0.022 £ 0.015
8 Feb 2015 08:59:07 -0.100 £+ 0.011 -0.050 £ 0.010  -0.050 £ 0.015
8 Feb 2015 09:20:05 -0.059 + 0.011 -0.016 + 0.010 -0.043 + 0.015
8 Feb 2015 09:40:58 -0.045 + 0.011 -0.017 £ 0.010 -0.028 + 0.015
8 Feb 2015 10:01:37 -0.025 + 0.011 -0.011 £ 0.010 -0.014 + 0.015
8 Feb 2015 10:22:17 0.032 + 0.012 0.042 +£ 0.011  -0.010 £ 0.016
8 Feb 2015 10:42:57 0.054 + 0.012  0.055 + 0.011  -0.001 + 0.016
8 Feb 2015 11:03:48  0.066 + 0.012  0.054 + 0.011 0.011 + 0.016
8 Feb 2015 11:24:55 0.110 + 0.012  0.085 + 0.012 0.025 £ 0.017
8 Feb 2015 11:45:34  0.120 £ 0.012  0.105 £ 0.012 0.015 + 0.017
8 Feb 2015 12:06:13  0.101 £ 0.012 0.091 £ 0.012  0.010 + 0.017
8 Feb 2015 12:26:52  0.106 + 0.013  0.072 + 0.014  0.034 + 0.019
9 Feb 2015 06:44:53 -0.020 + 0.014 0.008 + 0.013  -0.028 + 0.019
9 Feb 2015 07:05:32 -0.028 £+ 0.014 -0.049 + 0.012  0.021 £ 0.019
9 Feb 2015 07:26:11  0.005 £ 0.013  0.019 £ 0.012 -0.014 £ 0.018
9 Feb 2015 07:46:51 0.028 + 0.013  0.078 + 0.012  -0.050 + 0.018
9 Feb 2015 08:07:29 0.062 + 0.013 0.106 £ 0.012  -0.045 £+ 0.018
9 Feb 2015 08:28:07 0.047 + 0.012  0.127 + 0.012 -0.081 + 0.017
9 Feb 2015 08:48:59 0.068 +£ 0.012 0.108 + 0.012  -0.040 + 0.017
9 Feb 2015 09:09:38 0.080 + 0.012 0.094 + 0.012 -0.014 + 0.017
9 Feb 2015 09:30:16  0.051 + 0.011  0.059 + 0.011  -0.008 + 0.016
9 Feb 2015 09:51:15  0.047 + 0.011  0.040 £+ 0.011 0.007 £+ 0.016
9 Feb 2015 10:11:53  0.036 + 0.011  0.025 £+ 0.011 0.010 + 0.015
9 Feb 2015 10:32:32 -0.010 £ 0.010  0.009 £+ 0.010 -0.020 + 0.014
9 Feb 2015 10:53:11 -0.016 + 0.010 -0.006 + 0.010 -0.010 + 0.014

Continued on next page

XXXI



Table C.11 — continued from previous page

Date  Time” 1% V-1
(UT) (Relative) (Interpolated)

9 Feb 2015 11:13:50 -0.030 £ 0.010 -0.089 + 0.009  0.059 + 0.014

9 Feb 2015 11:34:28 -0.060 £+ 0.009 -0.146 + 0.009  0.086 + 0.013

9 Feb 2015 11:55:07 -0.064 + 0.009 -0.129 + 0.009  0.064 + 0.013

9 Feb 2015 12:15:46 -0.095 + 0.009 -0.115 + 0.009  0.020 + 0.013

9 Feb 2015 12:36:37 -0.093 + 0.011 -0.114 + 0.015 0.021 + 0.019
16 Feb 2015 06:33:37  0.088 £ 0.006 0.061 + 0.010  0.027 + 0.011
16 Feb 2015 06:54:16  0.044 + 0.006  0.045 £+ 0.009  -0.000 + 0.011
16 Feb 2015 07:14:55  0.006 £ 0.006 0.014 + 0.009 -0.008 + 0.010
16 Feb 2015 07:35:45 -0.006 £+ 0.005 -0.015 + 0.008  0.010 + 0.009
16 Feb 2015 07:56:24 -0.036 £+ 0.005 -0.030 £+ 0.008 -0.005 4+ 0.009
16 Feb 2015 08:17:04 -0.038 £ 0.005 -0.029 + 0.008 -0.008 + 0.009
16 Feb 2015 08:37:44 -0.038 £ 0.005 -0.021 + 0.008 -0.016 + 0.009
16 Feb 2015 08:58:23 -0.026 + 0.005 -0.027 + 0.008  0.001 + 0.009
16 Feb 2015 09:19:02 -0.021 £ 0.005 -0.020 + 0.008 -0.001 + 0.010
16 Feb 2015 09:41:04  0.002 £ 0.005 -0.011 + 0.009  0.014 + 0.010
16 Feb 2015 10:01:43  0.027 £ 0.005 0.004 £+ 0.009  0.023 + 0.011
16 Feb 2015 10:22:22  0.018 + 0.005 0.003 £ 0.010  0.016 + 0.011
16 Feb 2015 10:43:00 -0.023 £+ 0.005 -0.037 £ 0.010  0.015 + 0.011
17 Feb 2015 06:46:28 -0.092 + 0.006 -0.050 + 0.009 -0.042 + 0.011
17 Feb 2015 07:07:07 -0.059 £ 0.006 -0.027 + 0.008 -0.032 + 0.010
17 Feb 2015 07:27:46 -0.035 £ 0.006 -0.007 + 0.008 -0.028 + 0.010
17 Feb 2015 07:48:25 -0.012 £ 0.006  0.024 + 0.008 -0.036 + 0.010
17 Feb 2015 08:09:04  0.024 £ 0.006  0.055 + 0.008 -0.031 + 0.010
17 Feb 2015  08:29:43  0.066 + 0.006 0.081 + 0.008 -0.015 + 0.010
17 Feb 2015 08:50:21  0.083 £ 0.006  0.099 + 0.009 -0.016 + 0.011
17 Feb 2015 09:11:00 0.114 + 0.006  0.120 £+ 0.009  -0.006 + 0.011
17 Feb 2015 09:31:39  0.106 + 0.006  0.136 = 0.010  -0.030 £ 0.012
17 Feb 2015 09:52:18  0.120 £+ 0.006  0.128 £+ 0.009  -0.008 + 0.011
17 Feb 2015 10:12:57  0.116 + 0.006 0.112 £ 0.009  0.004 £ 0.011
17 Feb 2015 10:33:36  0.108 £ 0.006  0.086 + 0.009  0.022 + 0.011
17 Feb 2015 10:54:27  0.080 £+ 0.006  0.042 £+ 0.009  0.038 + 0.011
17 Feb 2015 11:15:06  0.050 £+ 0.006  0.024 + 0.009  0.026 + 0.011
17 Feb 2015 11:35:45 0.032 & 0.006 0.010 £ 0.008  0.022 £ 0.010
17 Feb 2015 11:56:23  0.005 £ 0.005 -0.022 + 0.008  0.027 + 0.009
17 Feb 2015 12:17:02 -0.026 + 0.006 -0.038 + 0.009  0.012 + 0.010

Note: These data are plotted in Figure 3.21.
¢ Times have been corrected for light travel time between the object and the observer.

Table C.12: 5144 Achates: V — I Color Variation for Partial Light Curve

Date  Time® 1% 1 V—-T
(UT) (Relative) (Interpolated)

26 June 2011 04:12:44  0.004 £ 0.005 -0.006 £ 0.007 0.010 + 0.008
26 June 2011 04:17:23 0.022 £+ 0.004 0.019 + 0.006  0.003 + 0.007
26 June 2011 04:22:06  0.040 £ 0.004 0.035 + 0.006  0.006 + 0.007
26 June 2011 04:26:46 0.054 + 0.004 0.035 + 0.006  0.020 + 0.007
26 June 2011 04:31:30  0.039 £+ 0.004 0.040 £+ 0.005 -0.000 + 0.007
26 June 2011 04:36:09 0.052 £ 0.004 0.047 + 0.006  0.006 + 0.007
26 June 2011 04:40:49 0.051 £ 0.004 0.056 + 0.005 -0.004 + 0.006
26 June 2011 04:45:29  0.039 + 0.004 0.049 + 0.005 -0.009 + 0.006
26 June 2011 04:50:08 0.029 £+ 0.004 0.040 £+ 0.005 -0.011 + 0.006
26 June 2011 04:54:51  0.031 £+ 0.004 0.040 £+ 0.005 -0.008 + 0.006
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Date  Time” 1% V-1
(UT) (Relative) (Interpolated)
26 June 2011 05:27:05 0.008 £ 0.004 0.016 + 0.005 -0.008 + 0.006
26 June 2011 05:31:44  0.003 £ 0.004 0.015 + 0.005 -0.012 %+ 0.006
26 June 2011 05:36:27  0.013 £ 0.004  0.017 + 0.005 -0.003 4+ 0.006
26 June 2011 05:41:04 0.002 + 0.004 0.016 + 0.005 -0.014 + 0.006
26 June 2011 05:45:43  0.008 £ 0.005 0.020 + 0.005 -0.012 £+ 0.007
26 June 2011 05:50:21  0.015 £ 0.004  0.019 + 0.005 -0.004 + 0.006
26 June 2011 05:55:00  0.017 £ 0.004  0.028 + 0.005 -0.011 £+ 0.007
26 June 2011 05:59:42  0.009 £ 0.004 0.036 £ 0.006 -0.026 + 0.007
26 June 2011 06:04:19  0.000 £ 0.004 0.001 + 0.005 -0.001 + 0.006
26 June 2011 06:08:56 -0.006 + 0.004 -0.004 + 0.005 -0.002 4+ 0.006
26 June 2011 06:37:54 -0.063 £ 0.004 -0.058 + 0.005 -0.004 + 0.006
26 June 2011 06:42:30 -0.066 + 0.004 -0.064 + 0.005 -0.001 4+ 0.006
26 June 2011 06:47:13 -0.077 £ 0.004 -0.069 + 0.005 -0.008 4+ 0.006
26 June 2011 06:51:49 -0.077 £ 0.004 -0.069 £+ 0.005 -0.007 £+ 0.006
26 June 2011 06:56:29 -0.089 £+ 0.004 -0.071 + 0.005 -0.017 + 0.006
26 June 2011 07:01:05 -0.070 £ 0.004 -0.081 + 0.005 0.012 £+ 0.007
26 June 2011 07:05:44 -0.068 £ 0.004 -0.072 £ 0.006  0.005 + 0.007
26 June 2011 07:10:24 -0.059 £ 0.004 -0.067 £ 0.005 0.008 %+ 0.006
26 June 2011 07:15:08 -0.055 £ 0.004 -0.052 + 0.005 -0.002 + 0.006
26 June 2011 07:19:47 -0.036 £ 0.004 -0.037 £ 0.005 0.002 %+ 0.006
26 June 2011 07:24:51 -0.025 £ 0.005 -0.030 + 0.005 0.005 £+ 0.007
26 June 2011 07:29:29 -0.003 £+ 0.005 -0.019 + 0.005 0.017 £+ 0.007
26 June 2011 07:34:11  0.007 £ 0.004 -0.011 + 0.007 0.018 4+ 0.008
26 June 2011 07:38:48 0.042 £ 0.004 0.004 + 0.007 0.039 + 0.008
26 June 2011 07:43:26  0.043 £ 0.006  0.037 + 0.007  0.006 + 0.009
26 June 2011 07:48:04 0.058 £ 0.005 0.037 + 0.009 0.021 £+ 0.011
26 June 2011 07:52:45 0.076 £ 0.005 0.036 + 0.008 0.040 + 0.010
26 June 2011 07:57:25  0.097 £ 0.004  0.069 + 0.005 0.028 £+ 0.007
26 June 2011 08:02:05 0.092 £ 0.005 0.066 + 0.006 0.026 + 0.008
26 June 2011 08:06:43  0.086 £+ 0.004 0.067 + 0.007 0.019 + 0.008
26 June 2011 08:15:25  0.063 £+ 0.005 0.080 + 0.005 -0.017 £+ 0.007
26 June 2011 08:20:03  0.052 £ 0.005 0.067 + 0.006 -0.015 4+ 0.008
26 June 2011 08:24:44  0.060 £ 0.005 0.059 £+ 0.006 0.002 £+ 0.008
26 June 2011 08:29:21  0.044 + 0.004 0.061 + 0.006 -0.017 £+ 0.007
26 June 2011 08:34:03  0.025 £ 0.004  0.051 + 0.006 -0.026 £+ 0.007
26 June 2011 08:38:41  0.025 + 0.004  0.021 + 0.006  0.004 £+ 0.007
26 June 2011 08:43:18  0.009 + 0.004 0.023 + 0.005 -0.013 £+ 0.007
26 June 2011 08:53:04 0.001 £+ 0.004 0.003 + 0.006 -0.001 £+ 0.007
26 June 2011 08:57:45 -0.017 £ 0.004 -0.003 £ 0.006 -0.013 = 0.007
26 June 2011 09:02:23 -0.026 £ 0.004 -0.000 + 0.005 -0.025 + 0.006
26 June 2011 09:07:01 -0.037 £ 0.004 -0.017 + 0.005 -0.019 + 0.006
26 June 2011 09:11:44 -0.047 £+ 0.004 -0.020 + 0.005 -0.027 £+ 0.007
26 June 2011 09:16:22 -0.048 £ 0.004 -0.028 £+ 0.006 -0.019 + 0.007
26 June 2011 09:21:04 -0.064 £+ 0.004 -0.055 + 0.005 -0.008 + 0.006
26 June 2011 09:25:43 -0.058 £ 0.004 -0.060 + 0.005 0.003 + 0.006
26 June 2011 09:30:21 -0.071 £ 0.004 -0.059 + 0.005 -0.011 + 0.006
26 June 2011 09:34:59 -0.065 £+ 0.004 -0.066 + 0.005 0.002 + 0.006
26 June 2011 09:40:42 -0.058 £ 0.004 -0.068 + 0.005 0.010 + 0.006
26 June 2011 09:45:19 -0.042 £ 0.004 -0.062 £ 0.005 0.021 %+ 0.006
26 June 2011 09:49:59 -0.050 £ 0.004 -0.061 + 0.005 0.012 £+ 0.007
26 June 2011 09:54:36  -0.027 £ 0.005 -0.059 + 0.006 0.032 4+ 0.008
26 June 2011 09:59:14 -0.021 £ 0.004 -0.037 + 0.005 0.016 + 0.006
26 June 2011 10:03:59 -0.003 £ 0.004 -0.019 + 0.005 0.017 + 0.006
C
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Date  Time” 1% I V-1
(UT) (Relative) (Interpolated)
26 June 2011 10:08:44 0.003 £ 0.004 -0.004 £ 0.005 0.008 £+ 0.006
26 June 2011 10:13:24  0.022 £ 0.004 0.014 + 0.005 0.008 %+ 0.006
26 June 2011 10:18:02 0.014 £+ 0.005 0.014 + 0.005 0.001 £+ 0.007
26 June 2011 10:22:41  0.046 £ 0.006 0.007 + 0.006  0.040 + 0.009

Note: These data are plotted in Figure 3.25.
¢ Times have been corrected for light travel time between the object and the observer.

D Full Anchises Light Curve Data
Table D.1: Observations of 1173 Anchises

Date Time® Phase® Filter® Relative?
(UT) Magnitude
8 Aug 20IT 23:05:35 0.299 0.214 £+ 0.023
8 Aug 2011 23:09:19  0.304 0.217 £ 0.032
8 Aug 2011 23:15:00 0.312 \Y 0.251 + 0.022
8 Aug 2011 23:20:58 0.321 022
8 Aug 2011 23:22:22 0.323 020
8 Aug 2011 23:23:47 0.325 022
8 Aug 2011 23:25:11  0.327 020
8 Aug 2011 23:26:36  0.329 021
8 Aug 2011 23:28:00 0.331 020
8 Aug 2011 23:29:24 0.333 021
8 Aug 2011 23:30:49 0.335 019
8 Aug 2011 23:32:13  0.337 021
8 Aug 2011 23:33:37  0.339 021
8 Aug 2011 23:35:00 0.341
8 Aug 2011 23:36:24 0.343
8 Aug 2011 23:37:49 0.345
8 Aug 2011 23:39:13  0.347
8 Aug 2011 23:40:37  0.349
8 Aug 2011 23:42:01 0.351
8 Aug 2011 23:43:26  0.353
8 Aug 2011 23:44:50  0.355
8 Aug 2011 23:46:14  0.357
8 Aug 2011 23:47:38  0.359
8 Aug 2011 23:49:02 0.361
8 Aug 2011 23:50:26  0.363
8 Aug 2011 23:51:50 0.365
8 Aug 2011 23:53:15  0.367
8 Aug 2011 23:54:39  0.369
8 Aug 2011 23:56:03  0.371
8 Aug 2011 23:57:27  0.373
9 Aug 2011 00:00:14 0.377
9 Aug 2011 00:01:38  0.379
9 Aug 2011 00:03:02  0.381
9 Aug 2011 00:04:26  0.383
9 Aug 2011 00:08:14 0.389
9 Aug 2011 00:09:38  0.391
9 Aug 2011 00:11:02  0.393
9 Aug 2011 00:12:26  0.395
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
9 Aug 2011 00:13:51  0.397 I 0.161 + 0.026
9 Aug 2011 00:15:14  0.399 Vv 0.114 + 0.024
9 Aug 2011 00:18:04 0.403 Vv 0.153 + 0.018
9 Aug 2011 00:20:51  0.407 A% 0.149 + 0.018
9 Aug 2011 00:22:15 0.409 I 0.138 + 0.020
9 Aug 2011 00:23:40 0411 A% 0.142 + 0.020
9 Aug 2011 00:25:03 0.413 I 0.130 + 0.026
9 Aug 2011 00:26:27 0.415 Vv 0.146 + 0.021
9 Aug 2011 00:27:51 0.417 I 0.137 + 0.019
9 Aug 2011 00:29:16  0.419 Vv 0.119 + 0.016
9 Aug 2011 00:30:41 0.421 I 0.135 + 0.018
9 Aug 2011 00:32:04 0.423 Vv 0.138 + 0.016
9 Aug 2011 00:33:28  0.425 I 0.118 + 0.018
9 Aug 2011 00:34:53  0.427 Vv 0.116 + 0.016
9 Aug 2011 00:36:17  0.429 I 0.103 + 0.018
9 Aug 2011 00:37:41  0.431 A% 0.098 + 0.016
9 Aug 2011 00:39:06 0.433 I 0.102 + 0.018
9 Aug 2011 00:40:31  0.435 Vv 0.084 + 0.015
9 Aug 2011 00:41:55 0.437 I 0.103 + 0.018
9 Aug 2011 00:43:19 0.439 A% 0.065 + 0.015
9 Aug 2011 00:46:08 0.443 A% 0.064 + 0.017
9 Aug 2011 00:47:32 0.445 I 0.053 + 0.020
9 Aug 2011 00:48:56  0.447 A% 0.034 + 0.017
9 Aug 2011 00:50:21  0.449 I 0.037 + 0.019
9 Aug 2011 00:51:46  0.451 Vv 0.043 + 0.017
9 Aug 2011 00:53:29 0.454 I 0.019 + 0.021
9 Aug 2011 00:54:54 0.456 Vv 0.018 + 0.023
9 Aug 2011 00:56:19  0.458 I 0.016 + 0.038
9 Aug 2011 00:57:42  0.460 A% 0.011 + 0.036
9 Aug 2011 00:59:07 0.462 I -0.037 + 0.053
9 Aug 2011 01:00:31 0.464 A% -0.056 + 0.124
9 Aug 2011 01:01:55 0.466 I -0.007 + 0.050
9 Aug 2011 01:03:19  0.468 A% -0.050 + 0.016
9 Aug 2011 01:04:44 0.470 I -0.054 + 0.017
9 Aug 2011 01:06:08 0.472 A% -0.045 + 0.014
9 Aug 2011 01:07:32 0.474 I -0.059 + 0.015
9 Aug 2011 01:08:56 0.476 Vv -0.055 + 0.013
9 Aug 2011 01:10:21  0.478 I -0.052 + 0.016
9 Aug 2011 01:11:45  0.480 Vv -0.051 + 0.014
9 Aug 2011 01:13:09 0.482 I -0.085 + 0.016
9 Aug 2011 01:14:32 0.484 Vv -0.080 + 0.014
9 Aug 2011 01:15:55 0.486 I -0.093 + 0.017
9 Aug 2011 01:17:20 0.488 Vv -0.091 + 0.016
9 Aug 2011 01:18:45 0.490 I -0.127 + 0.021
9 Aug 2011 01:20:09  0.492 A% -0.095 + 0.024
9 Aug 2011 01:21:32 0.494 I -0.051 + 0.034
9 Aug 2011 01:22:56  0.496 A% -0.062 + 0.053
9 Aug 2011 01:24:20 0.498 I -0.098 + 0.074
9 Aug 2011 01:28:32 0.504 A% -0.128 + 0.063
9 Aug 2011 01:29:57  0.506 I -0.108 + 0.037
9 Aug 2011 01:31:21  0.508 Vv -0.097 + 0.037
9 Aug 2011 01:32:45 0.510 I -0.147 + 0.086
9 Aug 2011 01:34:08 0.512 A% -0.135 + 0.102
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
9 Aug 2011 01:36:57 0.516 \Y% -0.098 + 0.054
9 Aug 2011 01:38:34 0.518 I -0.131 + 0.029
9 Aug 2011 01:39:58  0.520 Vv -0.161 + 0.019
9 Aug 2011 01:41:23  0.522 I -0.158 + 0.022
9 Aug 2011 01:42:47 0.524 A% -0.161 + 0.021
9 Aug 2011 01:44:11 0.527 I -0.174 + 0.021
9 Aug 2011 01:45:35 0.529 Vv -0.163 + 0.016
9 Aug 2011 01:46:59 0.531 I -0.184 + 0.020
9 Aug 2011 01:48:23  0.533 Vv -0.160 + 0.017
9 Aug 2011 01:49:47  0.535 I -0.166 + 0.023
9 Aug 2011 01:51:10 0.537 A% -0.183 + 0.022
9 Aug 2011 01:52:34  0.539 I -0.164 + 0.027
9 Aug 2011 01:53:58  0.541 Vv -0.160 + 0.033
9 Aug 2011 01:55:23  0.543 I -0.171 + 0.049
9 Aug 2011 01:56:46 0.545 A% -0.183 + 0.043
9 Aug 2011 01:58:09  0.547 I -0.105 + 0.074
9 Aug 2011 01:59:34  0.549 A% -0.171 + 0.043
9 Aug 2011 02:00:58 0.551 I -0.196 + 0.036
9 Aug 2011 02:02:22  0.553 Vv -0.202 + 0.021
9 Aug 2011 02:03:46 0.555 I -0.177 + 0.026
9 Aug 2011 02:05:10  0.557 Vv -0.216 + 0.020
9 Aug 2011 02:06:34 0.559 I -0.208 + 0.017
9 Aug 2011 02:07:58 0.561 A% -0.246 + 0.016
9 Aug 2011 02:09:23  0.563 I -0.221 + 0.016
9 Aug 2011 02:10:47  0.565 Vv -0.237 + 0.015
9 Aug 2011 02:12:11  0.567 I -0.217 + 0.015
9 Aug 2011 02:13:36  0.569 A% -0.219 + 0.015
9 Aug 2011 02:15:00 0.571 I -0.209 + 0.014
9 Aug 2011 02:16:24 0.573 Vv -0.225 + 0.012
9 Aug 2011 02:17:49 0.575 I -0.210 + 0.013
9 Aug 2011 02:19:13  0.577 A% -0.202 + 0.012
9 Aug 2011 02:20:37 0.579 I -0.232 + 0.014
9 Aug 2011 02:22:01 0.581 A% -0.197 + 0.012
9 Aug 2011 02:24:55 0.585 Vv -0.212 + 0.012
9 Aug 2011 02:26:19  0.587 I -0.234 + 0.013
9 Aug 2011 02:27:43  0.589 A% -0.210 + 0.012
9 Aug 2011 02:29:07 0.591 I -0.225 + 0.014
9 Aug 2011 02:30:31  0.593 A% -0.204 + 0.012
9 Aug 2011 02:31:56  0.595 I -0.236 + 0.014
9 Aug 2011 02:33:19  0.597 A% -0.206 + 0.014
9 Aug 2011 02:34:44  0.599 I -0.235 + 0.014
9 Aug 2011 02:36:08 0.601 A% -0.214 + 0.012
9 Aug 2011 02:38:56  0.605 Vv -0.199 + 0.012
9 Aug 2011 02:40:20 0.607 I -0.233 + 0.013
9 Aug 2011 02:41:45  0.609 Vv -0.206 + 0.011
9 Aug 2011 02:43:09 0.611 I -0.245 + 0.012
9 Aug 2011 02:44:32 0.613 Vv -0.188 + 0.011
9 Aug 2011 02:45:57 0.615 I -0.235 + 0.013
9 Aug 2011 02:47:21 0.617 Vv -0.192 + 0.013
9 Aug 2011 02:48:46 0.619 I -0.238 + 0.013
9 Aug 2011 02:50:10 0.621 Vv -0.187 + 0.012
9 Aug 2011 02:51:34 0.623 I -0.231 + 0.013
9 Aug 2011 02:52:59  0.625 Vv -0.191 + 0.011
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Date Time® Phase® Filter® Relative?
(UT) Magnitude

9 Aug 2011 02:54:23  0.627 I -0.227 + 0.013
9 Aug 2011 02:55:46 0.629 \Y -0.197 + 0.013
9 Aug 2011 02:57:11  0.631 I -0.228 + 0.013
9 Aug 2011 02:58:35  0.633 \Y -0.187 + 0.012
9 Aug 2011 03:00:00 0.635 I -0.231 + 0.013
9 Aug 2011 03:01:24 0.637 \Y -0.183 + 0.012
9 Aug 2011 03:02:48 0.639 I -0.224 + 0.014
9 Aug 2011 03:04:13  0.641 \Y -0.177 + 0.012
9 Aug 2011 03:07:01  0.645 \Y -0.178 + 0.012
9 Aug 2011 03:08:37  0.648 I -0.204 + 0.014
9 Aug 2011 03:10:02 0.650 \Y -0.175 + 0.012
9 Aug 2011 03:11:26  0.652 I -0.205 + 0.014
9 Aug 2011 03:12:51 0.654 \Y -0.165 + 0.012
9 Aug 2011 03:14:15  0.656 I -0.198 + 0.013
9 Aug 2011 03:15:40 0.658 \Y -0.149 + 0.012
9 Aug 2011 03:17:03  0.660 I -0.185 + 0.013
9 Aug 2011 03:18:28  0.662 \Y -0.153 + 0.012
9 Aug 2011 03:19:53  0.664 I -0.194 + 0.013
9 Aug 2011 03:21:16  0.666 \Y -0.143 + 0.012
9 Aug 2011 03:22:40  0.668 I -0.171 + 0.013
9 Aug 2011 03:24:05 0.670 \Y -0.132 + 0.012
9 Aug 2011 03:25:29 0.672 I -0.181 + 0.013
9 Aug 2011 03:26:53 0.674 \Y -0.149 + 0.012
9 Aug 2011 04:00:11  0.722 \Y -0.009 + 0.012
9 Aug 2011 04:01:36  0.724 I 0.009 £ 0.015
9 Aug 2011 04:03:00 0.726 \Y 0.000 £+ 0.013
9 Aug 2011 04:04:24 0.728 I 0.003 + 0.019
9 Aug 2011 04:05:49 0.730 \Y 0.007 + 0.017
9 Aug 2011 04:07:13 0.732 I 0.036 £ 0.022
9 Aug 2011 04:08:36  0.734 \Y 0.022 £ 0.018
9 Aug 2011 04:10:01 0.736 I 0.037 £+ 0.028
9 Aug 2011 04:11:25 0.738 \Y 0.022 £+ 0.020
9 Aug 2011 04:12:49 0.740 I 0.042 + 0.021
9 Aug 2011 04:14:13  0.742 \Y 0.044 £+ 0.019
9 Aug 2011 04:15:37 0.744 I 0.072 £+ 0.019
9 Aug 2011 04:17:01  0.746 \Y 0.040 £ 0.013
9 Aug 2011 04:18:26  0.748 I 0.065 + 0.016
9 Aug 2011 04:19:50 0.750 \Y 0.069 £+ 0.015
9 Aug 2011 04:21:13  0.752 I 0.071 £+ 0.022
9 Aug 2011 04:22:38 0.754 \Y 0.083 + 0.015
9 Aug 2011 04:24:02 0.756 I 0.106 £+ 0.019
9 Aug 2011 04:25:26  0.758 \Y 0.112 + 0.014
9 Aug 2011 04:26:49 0.760 I 0.118 + 0.017
9 Aug 2011 04:28:13 0.762 \Y 0.130 + 0.014
9 Aug 2011 04:29:37  0.764 I 0.131 + 0.016
9 Aug 2011 04:31:02 0.766 \Y 0.144 + 0.014
9 Aug 2011 04:32:26  0.768 I 0.143 + 0.017
9 Aug 2011 04:33:50 0.770 \Y 0.177 + 0.016
9 Aug 2011 04:35:14  0.772 I 0.157 £ 0.024
9 Aug 2011 04:36:39 0.774 \Y 0.184 + 0.017
9 Aug 2011 04:38:03 0.776 I 0.167 £+ 0.018
9 Aug 2011 04:39:27 0.778 \Y 0.152 £+ 0.015
9 Aug 2011 04:41:13  0.781 I 0.159 + 0.017
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
9 Aug 2011 04:42:36 0.783 \Y% 0.168 + 0.014
9 Aug 2011 04:44:00 0.785 I 0.165 + 0.017
9 Aug 2011 04:45:24  0.787 Vv 0.172 + 0.015
9 Aug 2011 04:46:49  0.789 I 0.166 + 0.017
9 Aug 2011 04:48:12 0.791 A% 0.176 + 0.015
9 Aug 2011 04:49:36  0.793 I 0.170 + 0.017
9 Aug 2011 04:51:01  0.795 Vv 0.202 + 0.015
9 Aug 2011 04:52:25 0.797 I 0.176 + 0.017
9 Aug 2011 04:53:49 0.799 Vv 0.213 + 0.016
9 Aug 2011 04:55:14  0.801 I 0.187 + 0.017
9 Aug 2011 04:56:38  0.803 A% 0.225 + 0.016
9 Aug 2011 04:58:02 0.805 I 0.189 + 0.017
9 Aug 2011 04:59:26  0.807 A% 0.225 + 0.015
9 Aug 2011 05:00:50  0.809 I 0.199 + 0.017
9 Aug 2011 05:02:15 0.811 A% 0.229 + 0.015
9 Aug 2011 05:03:39  0.813 I 0.208 + 0.017
9 Aug 2011 05:05:03 0.815 A% 0.227 + 0.015
9 Aug 2011 05:06:27 0.817 I 0.206 + 0.018
9 Aug 2011 05:07:52 0.819 Vv 0.234 + 0.016
9 Aug 2011 05:09:16 0.821 I 0.186 + 0.018
9 Aug 2011 05:10:40 0.823 A% 0.222 + 0.016
9 Aug 2011 05:12:04 0.825 I 0.201 + 0.018
9 Aug 2011 05:13:29  0.827 A% 0.225 + 0.017
9 Aug 2011 05:14:53  0.829 I 0.203 + 0.018
9 Aug 2011 05:16:16  0.831 Vv 0.219 + 0.015
9 Aug 2011 05:17:40 0.833 I 0.195 + 0.018
9 Aug 2011 05:19:04 0.835 Vv 0.228 + 0.016
9 Aug 2011 05:20:28  0.837 I 0.189 + 0.017
9 Aug 2011 05:21:52  0.839 A% 0.206 + 0.015
9 Aug 2011 05:23:16  0.841 I 0.210 + 0.020
9 Aug 2011 05:24:40 0.843 Vv 0.223 + 0.016
9 Aug 2011 05:27:25  0.847 I 0.212 + 0.018
9 Aug 2011 05:28:49 0.849 Vv 0.216 + 0.017
9 Aug 2011 05:30:14 0.851 I 0.219 + 0.025
9 Aug 2011 05:31:38  0.853 A% 0.184 + 0.041
9 Aug 2011 05:33:03 0.855 I 0.206 + 0.035
9 Aug 2011 05:34:27  0.857 A% 0.210 + 0.023
9 Aug 2011 05:35:51  0.859 I 0.200 + 0.027
9 Aug 2011 05:37:16  0.861 Vv 0.231 + 0.016
9 Aug 2011 05:38:40 0.863 I 0.216 + 0.021
9 Aug 2011 05:40:04 0.865 A% 0.243 + 0.031
9 Aug 2011 05:41:28 0.867 I 0.204 + 0.023
9 Aug 2011 05:42:52  0.869 A% 0.219 + 0.037
9 Aug 2011 05:44:16  0.871 I 0.239 + 0.045
9 Aug 2011 05:45:40 0.873 Vv 0.220 + 0.038
9 Aug 2011 05:47:04 0.875 I 0.258 + 0.032
9 Aug 2011 05:48:29 0.877 A% 0.216 + 0.026
9 Aug 2011 05:49:53 0.879 I 0.246 + 0.054
9 Aug 2011 05:51:17 0.881 A% 0.238 + 0.062
9 Aug 2011 05:54:04 0.885 A% 0.209 + 0.041
9 Aug 2011 05:55:30  0.887 I 0.246 + 0.047
9 Aug 2011 05:56:55 0.889 A% 0.218 + 0.046
9 Aug 2011 05:59:43 0.893 A% 0.189 + 0.025
n
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
9 Aug 2011 06:01:07 0.895 I 0.202 + 0.022
9 Aug 2011 06:02:32  0.897 Vv 0.195 4+ 0.018
9 Aug 2011 06:03:55 0.899 I 0.202 + 0.022
9 Aug 2011 06:05:19  0.901 A% 0.165 + 0.022
9 Aug 2011 06:06:44 0.903 I 0.179 + 0.029
9 Aug 2011 06:08:08 0.905 Vv 0.192 + 0.022
9 Aug 2011 06:09:31  0.907 I 0.186 + 0.022
9 Aug 2011 06:10:55 0.909 Vv 0.168 + 0.019
9 Aug 2011 06:12:25 0.912 I 0.175 + 0.024
9 Aug 2011 06:13:49 0.914 A% 0.161 + 0.016
9 Aug 2011 06:15:13  0.916 I 0.148 + 0.017
9 Aug 2011 06:16:37 0.918 Vv 0.145 + 0.014
9 Aug 2011 06:18:01  0.920 I 0.129 + 0.016
9 Aug 2011 06:19:25  0.922 A% 0.131 + 0.014
9 Aug 2011 06:20:50 0.924 I 0.130 + 0.016
9 Aug 2011 06:22:14  0.926 Vv 0.125 + 0.014
9 Aug 2011 06:23:38  0.928 I 0.116 + 0.016
9 Aug 2011 06:25:02 0.930 Vv 0.116 + 0.014
9 Aug 2011 06:26:26  0.932 I 0.122 + 0.017
9 Aug 2011 06:27:50 0.934 A% 0.100 + 0.015
9 Aug 2011 06:29:14 0.936 I 0.081 + 0.017
9 Aug 2011 06:30:38 0.938 Vv 0.095 + 0.030
9 Aug 2011 06:32:02  0.940 I 0.115 + 0.037
9 Aug 2011 06:33:27  0.942 A% 0.052 + 0.018
9 Aug 2011 06:34:51 0.944 I 0.079 + 0.019
9 Aug 2011 06:36:15 0.946 Vv 0.057 + 0.014
9 Aug 2011 06:37:41  0.948 I 0.045 + 0.020
9 Aug 2011 06:39:05 0.950 Vv 0.037 + 0.018
9 Aug 2011 06:40:30 0.952 I 0.038 + 0.020
9 Aug 2011 06:41:55 0.954 Vv 0.047 + 0.028
9 Aug 2011 06:43:19 0.956 I 0.025 + 0.031
9 Aug 2011 06:44:43  0.958 Vv 0.037 + 0.027
9 Aug 2011 06:46:07  0.960 I 0.006 + 0.022
9 Aug 2011 06:47:31  0.962 Vv -0.013 + 0.017
9 Aug 2011 06:48:55 0.964 I 0.013 + 0.025
9 Aug 2011 06:50:19  0.966 A% -0.014 + 0.015
9 Aug 2011 06:53:07 0.970 Vv -0.030 + 0.014
9 Aug 2011 06:54:31 0.972 I -0.028 + 0.016
9 Aug 2011 06:55:55 0.974 Vv -0.048 + 0.013
9 Aug 2011 06:57:22 0.976 I -0.039 + 0.015
9 Aug 2011 06:58:45 0.978 Vv -0.066 + 0.012
9 Aug 2011 07:01:33  0.982 Vv -0.081 + 0.012
9 Aug 2011 07:02:58 0.984 I -0.100 + 0.014
9 Aug 2011 07:04:22  0.986 Vv -0.090 + 0.012
9 Aug 2011 07:05:46  0.988 I -0.123 + 0.014
9 Aug 2011 07:07:11  0.990 A% -0.100 + 0.012
9 Aug 2011 07:08:35 0.992 I -0.124 + 0.014
9 Aug 2011 07:09:59  0.994 Vv -0.128 + 0.012
9 Aug 2011 07:11:22  0.996 I -0.133 + 0.014
9 Aug 2011 07:12:46  0.998 A% -0.135 + 0.012
9 Aug 2011 07:15:34  0.002 A% -0.136 + 0.012
9 Aug 2011 07:18:21  0.006 A% -0.148 + 0.012
9 Aug 2011 07:19:45 0.008 I -0.171 + 0.013
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
9 Aug 2011 07:21:09 0.010 \Y% -0.153 + 0.012
9 Aug 2011 07:22:33 0.012 I -0.169 + 0.014
9 Aug 2011 07:23:57 0.014 Vv -0.163 + 0.012
9 Aug 2011 07:25:20 0.016 I -0.186 + 0.013
9 Aug 2011 07:26:44 0.018 A% -0.176 + 0.011
9 Aug 2011 07:28:08 0.020 I -0.182 + 0.014
9 Aug 2011 07:29:33  0.022 Vv -0.178 + 0.011
9 Aug 2011 07:30:57 0.024 I -0.189 + 0.013
9 Aug 2011 07:32:21  0.026 Vv -0.189 + 0.011
9 Aug 2011 07:33:45 0.028 I -0.177 + 0.014
9 Aug 2011 07:35:09 0.030 A% -0.197 + 0.011
9 Aug 2011 07:36:33  0.032 I -0.194 + 0.014
9 Aug 2011 07:37:56 0.034 Vv -0.194 + 0.011
9 Aug 2011 07:39:21  0.036 I -0.197 + 0.014
9 Aug 2011 07:40:45 0.038 A% -0.207 £+ 0.011
9 Aug 2011 07:42:11  0.040 I -0.193 + 0.013
9 Aug 2011 07:43:35 0.042 A% -0.216 + 0.011
9 Aug 2011 07:45:00 0.045 I -0.196 + 0.013
9 Aug 2011 07:46:24  0.047 Vv -0.217 + 0.011
9 Aug 2011 07:47:47 0.049 I -0.194 + 0.013
9 Aug 2011 07:49:12 0.051 Vv -0.217 + 0.011
9 Aug 2011 07:50:36  0.053 I -0.209 + 0.013
9 Aug 2011 07:52:00 0.055 A% -0.218 + 0.011
9 Aug 2011 07:53:24  0.057 I -0.215 + 0.013
9 Aug 2011 07:54:48 0.059 Vv -0.228 + 0.011
9 Aug 2011 07:56:12 0.061 I -0.227 + 0.013
9 Aug 2011 07:57:37 0.063 A% -0.232 + 0.011
9 Aug 2011 07:59:00 0.065 I -0.218 + 0.013
9 Aug 2011 08:00:24 0.067 Vv -0.239 + 0.011
9 Aug 2011 08:03:14 0.071 A% -0.234 + 0.011
9 Aug 2011 08:04:37 0.073 I -0.228 + 0.013
9 Aug 2011 08:06:02 0.075 Vv -0.230 + 0.011
9 Aug 2011 08:07:26  0.077 I -0.232 + 0.013
9 Aug 2011 08:08:51 0.079 Vv -0.237 + 0.011
30 Sept 2012 01:08:27  0.745 I -0.064 + 0.017
30 Sept 2012 01:10:59  0.748 A% -0.033 + 0.017
30 Sept 2012 01:13:32  0.752 I -0.030 + 0.017
30 Sept 2012 01:18:36  0.759 I -0.033 + 0.017
30 Sept 2012 01:21:09 0.763 A% -0.014 + 0.017
30 Sept 2012 01:23:41 0.767 I -0.006 + 0.017
30 Sept 2012 01:28:45 0.774 I -0.013 + 0.017
30 Sept 2012 01:33:50 0.781 I 0.019 + 0.017
30 Sept 2012 01:36:22  0.785 Vv -0.020 + 0.017
30 Sept 2012 01:43:46  0.795 I -0.007 + 0.017
30 Sept 2012 01:46:18  0.799 Vv -0.015 + 0.016
30 Sept 2012 01:48:51  0.803 I -0.009 + 0.016
30 Sept 2012 01:51:23  0.806 Vv 0.025 + 0.017
30 Sept 2012 01:53:55 0.810 I -0.004 + 0.016
30 Sept 2012 01:56:28 0.814 Vv 0.028 + 0.017
30 Sept 2012 01:59:00 0.817 I 0.019 + 0.016
30 Sept 2012 02:01:33 0.821 Vv 0.065 + 0.017
30 Sept 2012 02:04:05 0.825 I 0.024 + 0.016
30 Sept 2012 02:06:38  0.828 Vv 0.060 + 0.017
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30 Sept 2012 02:09:10 0.832 I 0.025 + 0.016
30 Sept 2012 02:11:43  0.836 A% 0.054 + 0.017
30 Sept 2012 02:18:25  0.845 I 0.046 + 0.016
30 Sept 2012 02:20:57 0.849 Vv 0.068 + 0.017
30 Sept 2012 02:23:29  0.852 I 0.089 + 0.016
30 Sept 2012 02:26:01  0.856 A% 0.066 + 0.017
30 Sept 2012 02:28:34  0.860 I 0.073 + 0.016
30 Sept 2012 02:31:06 0.863 A% 0.048 + 0.016
30 Sept 2012 02:33:38  0.867 I 0.078 + 0.016
30 Sept 2012 02:36:10 0.871 Vv 0.070 + 0.016
30 Sept 2012 02:38:43  0.874 I 0.069 + 0.016
30 Sept 2012 02:41:15 0.878 Vv 0.078 + 0.016
30 Sept 2012 02:43:48  0.882 I 0.084 + 0.016
30 Sept 2012 02:46:20 0.885 Vv 0.051 + 0.016
30 Sept 2012 02:53:07  0.895 I 0.075 + 0.014
30 Sept 2012 02:55:39  0.899 A% 0.094 + 0.016
30 Sept 2012 02:58:11  0.902 I 0.076 + 0.016
30 Sept 2012 03:00:44  0.906 Vv 0.076 + 0.016
30 Sept 2012 03:03:16  0.910 I 0.082 + 0.016
30 Sept 2012 03:05:49 0.913 Vv 0.079 + 0.016
30 Sept 2012 03:08:21 0.917 I 0.070 + 0.016
30 Sept 2012 03:10:53 0.921 Vv 0.078 + 0.016
30 Sept 2012 03:13:25  0.924 I 0.070 + 0.014
30 Sept 2012 03:15:57  0.928 A% 0.034 + 0.016
30 Sept 2012 03:18:30 0.931 I 0.035 + 0.016
30 Sept 2012 03:21:02  0.935 A% 0.066 + 0.016
30 Sept 2012 03:28:09  0.945 I 0.045 + 0.014
30 Sept 2012 03:30:41  0.949 Vv 0.059 + 0.016
30 Sept 2012 03:33:13  0.953 I 0.047 + 0.014
30 Sept 2012 03:35:45  0.956 A% 0.039 + 0.016
30 Sept 2012 03:38:18  0.960 I 0.044 + 0.015
30 Sept 2012 03:40:50 0.964 A% 0.040 + 0.016
30 Sept 2012 03:43:22  0.967 I 0.037 + 0.015
30 Sept 2012 03:45:54 0.971 A% 0.029 + 0.016
30 Sept 2012 03:48:27 0.974 I 0.026 + 0.014
30 Sept 2012 03:50:59  0.978 A% 0.021 + 0.015
30 Sept 2012 03:53:31  0.982 I 0.009 + 0.014
30 Sept 2012 03:56:03  0.985 A% 0.011 + 0.016
30 Sept 2012 04:06:12  1.000 I -0.017 + 0.014
30 Sept 2012 04:11:17  0.007 I -0.021 + 0.014
30 Sept 2012 04:13:49 0.011 Vv -0.023 + 0.016
30 Sept 2012 04:16:22  0.015 I -0.047 + 0.014
30 Sept 2012 04:18:53 0.018 A% -0.033 + 0.015
30 Sept 2012 04:21:26  0.022 I -0.033 + 0.014
30 Sept 2012  04:23:58  0.025 A% -0.052 + 0.016
30 Sept 2012 04:26:30  0.029 I -0.047 + 0.014
30 Sept 2012 04:29:02  0.033 Vv -0.059 + 0.015
30 Sept 2012 04:31:35 0.036 I -0.064 + 0.014
30 Sept 2012  04:34:07  0.040 Vv -0.055 + 0.016
30 Sept 2012 04:40:24  0.049 I -0.077 + 0.014
30 Sept 2012 04:42:56  0.053 Vv -0.067 + 0.015
30 Sept 2012 04:45:28  0.056 I -0.077 + 0.014
30 Sept 2012 04:48:01  0.060 Vv -0.078 + 0.016
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30 Sept 2012 04:50:33  0.064 I -0.069 + 0.014
30 Sept 2012 04:53:05 0.067 A% -0.069 + 0.015
30 Sept 2012 04:55:37 0.071 I -0.080 + 0.014
30 Sept 2012  04:58:09  0.075 Vv -0.085 + 0.015
30 Sept 2012 05:00:42  0.078 I -0.090 + 0.014
30 Sept 2012 05:03:14  0.082 Vv -0.080 + 0.015
30 Sept 2012 05:05:47  0.085 I -0.078 + 0.014
30 Sept 2012 05:08:19  0.089 A% -0.078 + 0.016
30 Sept 2012 05:14:44  0.098 I -0.086 + 0.014
30 Sept 2012 05:17:16  0.102 Vv -0.081 + 0.016
30 Sept 2012 05:19:49  0.106 I -0.090 + 0.014
30 Sept 2012 05:22:21  0.109 A% -0.088 + 0.016
30 Sept 2012 05:24:53  0.113 I -0.066 + 0.014
30 Sept 2012 05:27:25 0.117 Vv -0.086 + 0.016
30 Sept 2012 05:29:57  0.120 I -0.095 + 0.014
30 Sept 2012 05:32:30 0.124 Vv -0.089 + 0.016
30 Sept 2012 05:35:02 0.127 I -0.075 + 0.014
30 Sept 2012 05:37:34 0.131 Vv -0.082 + 0.016
30 Sept 2012 05:40:06 0.135 I -0.076 + 0.014
30 Sept 2012 05:42:39  0.138 Vv -0.063 + 0.016
30 Sept 2012 05:49:01  0.148 I -0.064 + 0.014
30 Sept 2012 05:51:33 0.151 Vv -0.059 + 0.016
30 Sept 2012 05:54:06  0.155 I -0.068 + 0.014
30 Sept 2012 05:56:38  0.158 A% -0.067 + 0.016
30 Sept 2012 05:59:10 0.162 I -0.048 + 0.014
30 Sept 2012 06:01:42 0.166 A% -0.040 + 0.017
30 Sept 2012 06:04:15 0.169 I -0.042 + 0.014
30 Sept 2012 06:06:47 0.173 Vv -0.060 + 0.016
30 Sept 2012 06:09:19  0.177 I -0.040 + 0.014
30 Sept 2012 06:11:52  0.180 A% -0.051 + 0.017
30 Sept 2012 06:14:24 0.184 I -0.034 + 0.015
30 Sept 2012 06:16:56  0.188 Vv -0.016 + 0.018
6 Oct 2012 23:28:01 0.072 I -0.039 + 0.016
6 Oct 2012 23:33:30 0.080 A% -0.049 + 0.015
6 Oct 2012 23:39:06 0.088 I -0.043 + 0.022
6 Oct 2012 23:44:35 0.096 \Y% -0.040 + 0.016
6 Oct 2012 23:50:12 0.104 I -0.044 + 0.018
6 Oct 2012 23:55:41 0.112 Vv -0.069 + 0.015
7 Oct 2012 00:08:22 0.130 I -0.053 + 0.016
7 Oct 2012 00:13:52 0.138 A% -0.060 + 0.013
7 Oct 2012 00:19:27 0.146 I -0.058 + 0.014
7 Oct 2012 00:24:06 0.153 Vv -0.024 + 0.013
7 Oct 2012 00:28:52 0.159 I -0.030 + 0.013
7 Oct 2012 00:33:31 0.166 A% -0.042 + 0.013
7 Oct 2012 00:49:51 0.189 I -0.065 + 0.013
7 Oct 2012 00:52:50 0.194 A% -0.062 + 0.013
7 Oct 2012 00:55:55 0.198 I -0.047 + 0.013
7 Oct 2012 00:58:54  0.202 Vv -0.042 + 0.013
7 Oct 2012 01:23:38 0.238 I -0.011 + 0.013
7 Oct 2012 01:26:36  0.242 A% 0.004 + 0.013
7 Oct 2012 01:29:41 0.247 I 0.012 + 0.013
7 Oct 2012 01:32:40 0.251 Vv 0.016 + 0.013
7 Oct 2012 01:35:46 0.255 I 0.011 + 0.014
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7 Oct 2012 01:38:45 0.260 \Y% 0.017 + 0.013
7 Oct 2012 01:41:51 0.264 I 0.031 + 0.014
7 Oct 2012 01:44:49  0.268 A% 0.029 + 0.013
7 Oct 2012 01:47:56 0.273 I 0.042 + 0.014
7 Oct 2012 01:50:55 0.277 Vv 0.038 + 0.014
7 Oct 2012 01:57:22 0.286 I 0.047 + 0.014
7 Oct 2012 02:00:21  0.291 A% 0.049 + 0.013
7 Oct 2012 02:03:27 0.295 I 0.051 + 0.013
7 Oct 2012 02:06:25  0.299 A% 0.048 + 0.013
7 Oct 2012 02:09:31 0.304 I 0.050 + 0.013
7 Oct 2012 02:12:30 0.308 Vv 0.053 + 0.013
7 Oct 2012 02:15:36 0.313 I 0.068 + 0.013
7 Oct 2012 02:18:35 0.317 A% 0.054 + 0.013
7 Oct 2012 02:21:40 0.321 I 0.061 + 0.013
7 Oct 2012 02:24:39 0.326 A% 0.069 + 0.013
7 Oct 2012 02:31:02 0.335 I 0.067 + 0.013
7 Oct 2012 02:34:01 0.339 Vv 0.071 + 0.013
7 Oct 2012 02:37:07 0.343 I 0.069 + 0.013
7 Oct 2012 02:40:05 0.348 Vv 0.070 + 0.013
7 Oct 2012 02:43:11 0.352 I 0.070 + 0.013
7 Oct 2012 02:46:10 0.356 A% 0.064 + 0.013
7 Oct 2012 02:49:16 0.361 I 0.069 + 0.013
7 Oct 2012 02:52:15  0.365 Vv 0.067 + 0.013
7 Oct 2012 02:55:20 0.370 I 0.073 + 0.013
7 Oct 2012 02:58:18 0.374 A% 0.068 + 0.013
7 Oct 2012 03:04:26 0.383 I 0.067 + 0.013
7 Oct 2012 03:07:24 0.387 Vv 0.071 + 0.013
7 Oct 2012 03:10:30 0.391 I 0.072 + 0.013
7 Oct 2012 03:13:29 0.396 A% 0.067 + 0.013
7 Oct 2012 03:16:35  0.400 I 0.066 + 0.013
7 Oct 2012 03:19:34 0.404 Vv 0.064 + 0.013
7 Oct 2012 03:22:39  0.409 I 0.067 + 0.013
7 Oct 2012 03:25:38 0.413 Vv 0.067 + 0.013
7 Oct 2012 03:28:44 0.418 I 0.070 + 0.013
7 Oct 2012 03:31:43  0.422 A% 0.065 + 0.013
7 Oct 2012 03:38:19 0.431 I 0.070 + 0.013
7 Oct 2012 03:41:18  0.436 A% 0.071 + 0.013
7 Oct 2012 03:44:24 0.440 I 0.072 + 0.013
7 Oct 2012 03:47:23 0.444 A% 0.070 + 0.013
7 Oct 2012 03:50:29 0.449 I 0.066 + 0.013
7 Oct 2012 03:53:28  0.453 Vv 0.064 + 0.013
7 Oct 2012 03:56:33  0.458 I 0.053 + 0.013
7 Oct 2012 03:59:32  0.462 A% 0.047 + 0.013
7 Oct 2012 04:02:38  0.466 I 0.054 + 0.013
7 Oct 2012 04:05:37 0471 Vv 0.045 + 0.013
7 Oct 2012 04:11:34 0.479 I 0.043 + 0.013
7 Oct 2012 04:14:33  0.483 A% 0.052 + 0.013
7 Oct 2012 04:17:39  0.488 I 0.037 + 0.013
7 Oct 2012 04:20:38 0.492 A% 0.041 + 0.013
7 Oct 2012 04:23:44  0.497 I 0.035 + 0.013
7 Oct 2012 04:26:43 0.501 A% 0.036 + 0.013
7 Oct 2012 04:29:48  0.505 I 0.025 + 0.013
7 Oct 2012 04:32:47 0.510 A% 0.018 + 0.013
n
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Date Time* Phase® Filter® Relative?
(UT) Magnitude
7 Oct 2012 04:35:53 0.514 I 0.023 + 0.013
7 Oct 2012 04:38:52 0.518 A% 0.022 4+ 0.013
7 Oct 2012 04:44:43  0.527 I 0.011 + 0.013
7 Oct 2012 04:47:41 0.531 A% 0.007 + 0.013
7 Oct 2012 04:50:47 0.535 I -0.004 + 0.013
7 Oct 2012 04:53:46  0.540 A% -0.009 + 0.013
7 Oct 2012 04:56:52 0.544 I -0.009 + 0.013
7 Oct 2012 04:59:51 0.548 Vv -0.012 + 0.013
7 Oct 2012 05:02:56  0.553 I -0.014 + 0.013
7 Oct 2012 05:05:55  0.557 Vv -0.016 + 0.013
7 Oct 2012 05:09:01 0.562 I -0.026 + 0.013
7 Oct 2012 05:12:00 0.566 Vv -0.019 + 0.013
7 Oct 2012 05:17:54 0.574 I -0.035 + 0.013
7 Oct 2012 05:20:53 0.579 A% -0.037 + 0.013
7 Oct 2012 05:23:59  0.583 I -0.026 + 0.013
7 Oct 2012 05:26:57  0.587 Vv -0.026 + 0.013
7 Oct 2012 05:30:03 0.592 I -0.030 + 0.013
7 Oct 2012 05:33:02 0.596 Vv -0.035 + 0.013
7 Oct 2012 05:36:08  0.600 I -0.037 + 0.013
20 Sept 2013 03:31:02  0.989 Vv 0.062 + 0.035
20 Sept 2013 03:36:14  0.997 I -0.626 + 0.034
20 Sept 2013 03:41:26  0.004 A% 0.023 + 0.032
20 Sept 2013  03:46:38  0.012 I 0.028 + 0.030
20 Sept 2013 03:51:50 0.019 Vv -0.090 + 0.031
20 Sept 2013 03:57:02  0.026 I 0.057 + 0.030
20 Sept 2013 04:02:14 0.034 A% 0.007 + 0.031
20 Sept 2013 04:07:26  0.041 I 0.077 + 0.030
20 Sept 2013 04:12:38  0.049 Vv -0.078 + 0.031
20 Sept 2013  04:17:49  0.056 I 0.124 + 0.030
20 Sept 2013 04:27:46 0.071 A% -0.044 + 0.031
20 Sept 2013 04:32:57 0.078 I -0.097 + 0.030
20 Sept 2013  04:38:09  0.086 Vv 0.016 + 0.031
20 Sept 2013  04:43:21  0.093 I 0.039 + 0.030
20 Sept 2013 04:48:33  0.100 Vv -0.058 + 0.030
20 Sept 2013  04:53:45  0.108 I 0.005 + 0.030
20 Sept 2013 04:58:56  0.115 Vv -0.024 + 0.030
20 Sept 2013 05:04:08 0.123 I 0.065 + 0.030
20 Sept 2013 05:09:20 0.130 Vv -0.033 + 0.030
20 Sept 2013 05:14:32  0.138 I 0.041 + 0.030
20 Sept 2013 05:23:58  0.151 A% -0.050 + 0.030
20 Sept 2013  05:29:09  0.159 I -0.077 + 0.030
20 Sept 2013 05:34:22  0.166 Vv -0.018 + 0.030
20 Sept 2013 05:39:33  0.174 I -0.076 + 0.030
20 Sept 2013 05:44:45 0.181 A% -0.023 + 0.030
20 Sept 2013  05:49:56  0.189 I 0.010 + 0.030
20 Sept 2013 05:55:09  0.196 A% -0.004 + 0.030
20 Sept 2013 06:00:20 0.204 I -0.015 + 0.030
20 Sept 2013 06:05:33 0.211 A% 0.018 + 0.030
20 Sept 2013 06:10:44 0.218 I 0.054 + 0.030
20 Sept 2013 06:19:41  0.231 A% 0.004 + 0.030
20 Sept 2013 06:24:53  0.239 I 0.040 + 0.030
20 Sept 2013 06:30:06  0.246 A% 0.044 + 0.030
20 Sept 2013 06:35:17  0.254 I 0.130 + 0.030
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20 Sept 2013 06:40:30 0.261 \Y% 0.051 + 0.030
20 Sept 2013 06:45:41  0.269 I 0.114 + 0.030
20 Sept 2013 06:50:54  0.276 Vv 0.055 + 0.030
20 Sept 2013  06:56:06  0.284 I 0.061 + 0.030
20 Sept 2013 07:01:18 0.291 A% 0.039 + 0.030
20 Sept 2013 07:06:29  0.299 I 0.130 + 0.030
20 Sept 2013 07:15:16 0.311 A% 0.042 + 0.030
20 Sept 2013 07:20:28 0.319 I 0.109 + 0.030
20 Sept 2013 07:25:40 0.326 Vv 0.066 + 0.030
20 Sept 2013 07:30:52  0.334 I 0.105 + 0.030
20 Sept 2013 07:36:04 0.341 Vv 0.052 + 0.030
20 Sept 2013 07:41:16  0.348 I 0.032 + 0.030
20 Sept 2013 07:46:28  0.356 Vv 0.062 + 0.030
20 Sept 2013 07:51:40 0.363 I 0.020 + 0.030
20 Sept 2013 08:02:04 0.378 I -0.296 + 0.030
20 Sept 2013 08:14:43  0.396 I -0.492 + 0.030
20 Sept 2013 08:25:08 0.411 I -0.192 + 0.030
20 Sept 2013 08:35:31  0.426 I 0.134 + 0.030
20 Sept 2013 08:40:43 0.434 Vv 0.030 + 0.030
20 Sept 2013 08:45:55  0.441 I 0.074 + 0.030
20 Sept 2013 08:51:06  0.449 A% 0.049 + 0.030
20 Sept 2013 08:56:18  0.456 I 0.157 + 0.030
20 Sept 2013  09:03:48  0.467 A% -0.008 + 0.030
20 Sept 2013 09:09:00 0.474 I -0.024 + 0.030
20 Sept 2013  09:14:12  0.482 A% 0.039 + 0.030
20 Sept 2013 09:19:24  0.489 I 0.038 + 0.030
20 Sept 2013 09:24:36  0.497 A% 0.009 + 0.030
20 Sept 2013  09:29:48  0.504 I -0.001 + 0.030
20 Sept 2013 09:35:01  0.512 Vv -0.004 + 0.030
20 Sept 2013 09:40:12  0.519 I 0.082 + 0.030
20 Sept 2013  09:45:24  0.527 A% -0.005 + 0.030
20 Sept 2013 09:50:36  0.534 I 0.060 + 0.030
20 Sept 2013 09:58:21  0.545 Vv -0.049 + 0.030
20 Sept 2013 10:03:33  0.553 I 0.019 + 0.030
20 Sept 2013 10:08:45  0.560 Vv -0.026 + 0.030
20 Sept 2013 10:13:57  0.568 I -0.005 + 0.030
20 Sept 2013 10:19:09  0.575 Vv -0.035 + 0.030
20 Sept 2013 10:24:21  0.583 I -0.027 + 0.030
20 Sept 2013  10:29:33  0.590 Vv -0.032 + 0.030
20 Sept 2013 10:34:45 0.597 I -0.015 + 0.030
20 Sept 2013  10:39:57  0.605 A% -0.038 + 0.030
20 Sept 2013 10:45:08 0.612 I 0.007 + 0.030
20 Sept 2013 10:53:23  0.624 A% -0.063 + 0.030
20 Sept 2013  10:58:35  0.632 I -0.048 + 0.030
20 Sept 2013 11:03:46  0.639 A% -0.046 + 0.030
20 Sept 2013 11:08:58  0.647 I -0.043 + 0.030
20 Sept 2013 11:14:10 0.654 A% -0.036 + 0.030
20 Sept 2013 11:19:23  0.662 I -0.056 + 0.030
20 Sept 2013  11:24:36  0.669 Vv -0.083 + 0.030
20 Sept 2013 11:29:47 0.676 I 0.046 + 0.030
20 Sept 2013 11:35:00 0.684 A% -0.026 + 0.030
20 Sept 2013 11:40:11  0.691 I 0.032 + 0.030
25 Sept 2013  03:09:28  0.295 Vv 0.052 + 0.030
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25 Sept 2013 03:14:39  0.302 I -0.103 + 0.030
25 Sept 2013 03:24:22  0.316 A% 0.062 + 0.030
25 Sept 2013  03:29:33  0.324 I -0.021 + 0.030
25 Sept 2013  03:34:45 0.331 A% 0.036 + 0.030
25 Sept 2013 03:39:57  0.339 I -0.030 + 0.030
25 Sept 2013 03:45:09  0.346 Vv 0.009 + 0.030
25 Sept 2013  03:50:20 0.354 I -0.226 + 0.030
25 Sept 2013 04:00:43  0.369 I -0.290 + 0.030
25 Sept 2013 04:56:51  0.449 I -0.090 + 0.030
25 Sept 2013  05:02:03  0.457 Vv -0.018 + 0.030
25 Sept 2013  05:07:15  0.464 I -0.228 + 0.030
25 Sept 2013  05:16:09  0.477 Vv 0.038 + 0.030
25 Sept 2013  05:21:21  0.484 I -0.045 + 0.030
25 Sept 2013  05:26:33  0.492 A% -0.006 + 0.030
25 Sept 2013  05:31:44  0.499 I -0.053 + 0.030
25 Sept 2013  05:36:56  0.507 Vv -0.005 + 0.030
25 Sept 2013  05:42:09 0.514 I 0.005 + 0.030
25 Sept 2013  05:47:21  0.522 Vv -0.037 + 0.030
25 Sept 2013  05:52:32  0.529 I -0.005 + 0.030
25 Sept 2013  05:57:44  0.537 Vv -0.035 + 0.030
25 Sept 2013 06:02:56  0.544 I 0.060 + 0.030
25 Sept 2013  06:11:19  0.556 Vv 0.006 + 0.030
25 Sept 2013  06:16:31  0.563 I 0.141 + 0.030
25 Sept 2013  06:21:42 0.571 A% -0.090 + 0.030
25 Sept 2013  06:26:53  0.578 I -0.014 + 0.030
25 Sept 2013  06:32:05  0.586 A% -0.060 + 0.030
25 Sept 2013 06:37:16  0.593 I -0.023 + 0.030
25 Sept 2013  06:42:28  0.601 A% -0.030 + 0.030
25 Sept 2013  06:47:40  0.608 I 0.087 + 0.030
25 Sept 2013  06:52:52  0.616 Vv -0.075 + 0.030
25 Sept 2013 06:58:03  0.623 I 0.086 + 0.030
25 Sept 2013  07:06:28  0.635 Vv -0.067 + 0.030
25 Sept 2013 07:11:39  0.643 I -0.138 + 0.030
25 Sept 2013  07:16:51  0.650 Vv -0.047 + 0.030
25 Sept 2013  07:22:03  0.658 I -0.121 + 0.030
25 Sept 2013  07:27:14  0.665 A% -0.058 + 0.030
25 Sept 2013  07:32:26  0.673 I -0.072 + 0.030
25 Sept 2013  07:37:37  0.680 Vv -0.051 + 0.030
25 Sept 2013  07:42:49  0.687 I -0.051 + 0.030
25 Sept 2013 07:48:01  0.695 A% -0.043 + 0.030
25 Sept 2013  07:53:13  0.702 I 0.050 + 0.030
25 Sept 2013  08:01:07 0.714 Vv -0.082 + 0.030
25 Sept 2013  08:06:19  0.721 I 0.053 + 0.030
25 Sept 2013  08:11:30  0.729 Vv -0.023 + 0.030
25 Sept 2013  08:16:41  0.736 I 0.051 + 0.030
25 Sept 2013 08:21:53  0.743 A% -0.015 + 0.030
25 Sept 2013  08:27:05 0.751 I -0.014 + 0.030
25 Sept 2013  08:32:16  0.758 Vv 0.033 + 0.030
25 Sept 2013  08:37:28  0.766 I 0.131 + 0.030
25 Sept 2013  08:42:40 0.773 A% -0.037 + 0.030
25 Sept 2013  08:47:52  0.781 I 0.038 + 0.030
25 Sept 2013 08:55:20 0.792 A% 0.014 + 0.030
25 Sept 2013  09:00:32  0.799 I 0.070 + 0.030
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25 Sept 2013  09:05:44  0.806 \Y 0.045 £ 0.030
25 Sept 2013 09:10:55 0.814 I 0.086 + 0.030
25 Sept 2013 09:16:07  0.821 \Y -0.005 + 0.030
25 Sept 2013 09:21:19  0.829 I 0.049 £+ 0.030
25 Sept 2013  09:26:30  0.836 \Y 0.078 £ 0.030
25 Sept 2013 09:31:42  0.844 I 0.066 + 0.030
25 Sept 2013 09:36:54  0.851 \Y 0.040 £+ 0.030
25 Sept 2013 09:42:06  0.859 I 0.123 £+ 0.030
25 Sept 2013 09:49:57  0.870 \Y 0.024 £+ 0.030
25 Sept 2013 09:55:09  0.877 I 0.064 £+ 0.030
25 Sept 2013 10:00:21  0.885 \Y 0.079 £+ 0.030
25 Sept 2013 10:05:32  0.892 I 0.015 £+ 0.030
25 Sept 2013 10:10:43  0.900 \Y 0.035 £+ 0.030
25 Sept 2013 10:15:55  0.907 I -0.001 £+ 0.030
25 Sept 2013 10:21:06  0.915 \Y 0.043 £+ 0.030
25 Sept 2013 10:26:18  0.922 I 0.053 £ 0.030
25 Sept 2013 10:31:30  0.930 \Y 0.016 £+ 0.030
25 Sept 2013 10:36:41  0.937 I 0.014 £+ 0.030
25 Sept 2013 10:44:31  0.948 \Y 0.001 £+ 0.030
25 Sept 2013 10:49:42  0.956 I 0.005 £ 0.030
25 Sept 2013 10:54:54  0.963 \Y 0.037 £+ 0.030
25 Sept 2013 11:00:06 0.971 I 0.024 £+ 0.030
25 Sept 2013 11:05:18  0.978 \Y -0.046 £+ 0.030
25 Sept 2013 11:10:29  0.986 I 0.074 £+ 0.030
25 Sept 2013 11:15:41  0.993 \Y -0.005 £+ 0.030
25 Sept 2013 11:20:52  0.000 I 0.100 £+ 0.030
25 Sept 2013 11:26:04  0.008 \Y -0.020 £+ 0.030
25 Sept 2013 11:31:16  0.015 I 0.053 £ 0.030
25 Sept 2013 11:41:04  0.029 \Y -0.012 £+ 0.030
25 Sept 2013 11:46:15  0.037 I -0.182 + 0.030
8 Feb 2015 01:59:25  0.008 I -0.104 £+ 0.027

8 Feb 2015 02:07:32 0.019 \Y -0.116 £+ 0.026
8 Feb 2015 02:20:57  0.039 I -0.120 £+ 0.027
8 Feb 2015 02:28:26  0.049 \Y -0.137 £+ 0.026

8 Feb 2015 02:41:03  0.067 I -0.129 £+ 0.027
8 Feb 2015 02:48:21  0.078 \Y -0.143 + 0.026
8 Feb 2015 03:00:02  0.095 I -0.123 £+ 0.027
8 Feb 2015 03:07:18 0.105 \Y -0.127 £+ 0.026

8 Feb 2015 03:19:01  0.122 I -0.120 £+ 0.027
8 Feb 2015 03:26:18 0.132 \Y -0.117 £+ 0.026

8 Feb 2015 03:38:00 0.149 I -0.099 + 0.027
8 Feb 2015 03:45:17  0.160 \Y -0.080 + 0.027
8 Feb 2015 03:56:59  0.176 I -0.082 £+ 0.027
8 Feb 2015 04:04:16  0.187 \Y -0.061 £+ 0.027
8 Feb 2015 04:15:57  0.204 I -0.045 £+ 0.027
8 Feb 2015 04:23:14 0.214 \Y 0.018 + 0.027
8 Feb 2015 04:35:37  0.232 I 0.031 + 0.027
8 Feb 2015 04:42:55  0.242 \Y 0.077 £ 0.027

8 Feb 2015 04:54:37  0.259 I 0.032 + 0.027
8 Feb 2015 05:01:53  0.270 \Y 0.123 + 0.027
8 Feb 2015 05:13:36  0.286 I 0.088 £ 0.027
8 Feb 2015 05:20:52  0.297 \Y 0.132 + 0.027
8 Feb 2015 05:32:34 0.314 I 0.115 + 0.027
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8 Feb 2015 05:39:51 0.324 \Y% 0.169 + 0.028
& Feb 2015 05:51:33 0.341 I 0.172 + 0.028
& Feb 2015 05:58:50 0.351 A% 0.151 + 0.030
& Feb 2015 06:10:32 0.368 I 0.156 + 0.027
8 Feb 2015 06:17:49 0.379 A% 0.136 + 0.028
9 Feb 2015 01:23:24 0.023 I -0.116 + 0.027
9 Feb 2015 01:32:52 0.037 Vv -0.126 + 0.027
9 Feb 2015 01:42:22 0.050 I -0.129 + 0.027
9 Feb 2015 01:51:52 0.064 Vv -0.132 + 0.026
9 Feb 2015 02:01:21 0.078 I -0.124 + 0.027
9 Feb 2015 02:10:50 0.091 A% -0.130 + 0.026
9 Feb 2015 02:19:32 0.104 I -0.125 + 0.027
9 Feb 2015 02:28:11 0.116 A% -0.108 + 0.026
9 Feb 2015 02:36:50 0.129 I -0.118 + 0.027
9 Feb 2015 02:45:29 0.141 A% -0.103 + 0.026
9 Feb 2015 02:54:10 0.154 I -0.094 + 0.027
9 Feb 2015 03:02:49 0.166 A% -0.074 + 0.027
9 Feb 2015 03:11:46 0.179 I -0.064 + 0.027
9 Feb 2015 03:20:26 0.191 Vv -0.039 + 0.027
9 Feb 2015 03:29:05 0.204 I -0.020 + 0.027
9 Feb 2015 03:37:44 0.216 A% 0.005 + 0.027
9 Feb 2015 03:46:24 0.229 I 0.016 + 0.027
9 Feb 2015 03:55:03 0.241 Vv 0.062 + 0.027
9 Feb 2015 04:04:09 0.254 I 0.063 + 0.027
9 Feb 2015 04:12:48 0.266 Vv 0.102 + 0.027
9 Feb 2015 04:21:27 0.279 I 0.098 + 0.027
9 Feb 2015 04:30:06 0.291 Vv 0.133 + 0.027
9 Feb 2015 04:38:46 0.304 I 0.114 + 0.027
9 Feb 2015 04:47:25 0.316 Vv 0.152 + 0.027
9 Feb 2015 04:56:38 0.329 I 0.128 + 0.027
9 Feb 2015 05:05:16 0.342 A% 0.158 + 0.027
9 Feb 2015 05:13:56 0.354 I 0.106 + 0.027
9 Feb 2015 05:22:35 0.367 Vv 0.148 + 0.027
9 Feb 2015 05:31:15 0.379 I 0.138 + 0.027
9 Feb 2015 05:39:54 0.391 Vv 0.150 + 0.027
9 Feb 2015 05:48:38 0.404 I 0.111 + 0.027
9 Feb 2015 05:57:17 0.416 A% 0.124 + 0.027
9 Feb 2015 06:06:02 0.429 I 0.059 + 0.028
9 Feb 2015 06:14:41 0.441 Vv 0.105 + 0.027
16 Feb 2015 01:30:57 0.506 I -0.029 + 0.027
16 Feb 2015 01:39:37 0.518 Vv -0.065 + 0.027
16 Feb 2015 01:48:16 0.530 I -0.055 + 0.027
16 Feb 2015 01:56:55 0.543 A% -0.094 + 0.027
16 Feb 2015 02:05:47 0.556 I -0.091 + 0.027
16 Feb 2015 02:14:26  0.568 Vv -0.099 + 0.027
16 Feb 2015 02:23:05 0.580 I -0.092 + 0.027
16 Feb 2015 02:31:43 0.593 Vv -0.133 + 0.027
16 Feb 2015 02:41:21  0.607 I -0.115 + 0.027
16 Feb 2015 02:50:00 0.619 A% -0.154 + 0.027
16 Feb 2015 02:58:39 0.631 I -0.129 + 0.027
16 Feb 2015 03:07:18 0.644 A% -0.153 + 0.027
16 Feb 2015 03:15:58 0.656 I -0.112 + 0.027
16 Feb 2015 03:24:37 0.669 Vv -0.141 + 0.027
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16 Feb 2015 03:33:16  0.681 I -0.073 £ 0.027
16 Feb 2015 03:41:56  0.694 \Y -0.100 £ 0.027
16 Feb 2015 03:50:38  0.706 I -0.037 £ 0.027
16 Feb 2015 03:59:17  0.718 \Y -0.074 £ 0.027
16 Feb 2015 04:07:57  0.731 I 0.024 £ 0.027
16 Feb 2015 04:16:37  0.743 \Y -0.030 £ 0.027
16 Feb 2015 04:25:16  0.756 | 0.029 £ 0.027
16 Feb 2015 04:33:55  0.768 \Y -0.033 £ 0.027
16 Feb 2015 04:42:35 0.781 I 0.006 £+ 0.027
16 Feb 2015 04:51:15  0.793 \Y -0.048 £ 0.027
16 Feb 2015 05:00:01  0.806 I 0.017 £+ 0.027
16 Feb 2015 05:08:40 0.818 \Y 0.049 + 0.027
16 Feb 2015 05:17:20  0.831 I 0.082 £ 0.027
16 Feb 2015 05:26:00  0.843 \Y 0.052 £ 0.027
16 Feb 2015 05:34:40  0.855 I 0.150 + 0.027
16 Feb 2015 05:43:19  0.868 \Y 0.096 £ 0.027
16 Feb 2015 05:51:59  0.880 I 0.173 £+ 0.027
16 Feb 2015 06:00:38  0.893 \Y 0.101 £ 0.027
17 Feb 2015 01:09:48  0.543 \Y -0.045 £ 0.058
17 Feb 2015 01:17:03  0.553 I -0.128 £ 0.028
17 Feb 2015 01:27:22  0.568 \Y -0.124 + 0.027
17 Feb 2015 01:37:41  0.583 I -0.114 £ 0.027
17 Feb 2015 01:48:12  0.598 \Y -0.140 £ 0.026
17 Feb 2015 01:58:33  0.612 I -0.129 £ 0.027
17 Feb 2015 02:08:52  0.627 \Y -0.149 £ 0.027
17 Feb 2015 02:19:12  0.642 I -0.123 £ 0.027
17 Feb 2015 02:29:31  0.657 \Y -0.087 £ 0.027
17 Feb 2015 02:39:51  0.672 I -0.085 £ 0.027
17 Feb 2015 02:50:21  0.687 \Y -0.115 £ 0.027
17 Feb 2015 03:00:41  0.702 | -0.081 £ 0.027
17 Feb 2015 03:11:00  0.717 \Y -0.080 + 0.027
17 Feb 2015 03:21:21  0.731 I -0.046 £ 0.027
17 Feb 2015 03:31:40  0.746 \Y -0.015 £ 0.027
17 Feb 2015 03:42:00 0.761 I 0.010 £ 0.027
17 Feb 2015 03:52:19  0.776 \Y 0.029 £ 0.027
17 Feb 2015 04:02:39  0.791 I 0.063 £+ 0.027
17 Feb 2015 04:12:57  0.805 \Y 0.088 + 0.027
17 Feb 2015 04:23:17  0.820 I 0.107 £ 0.027
17 Feb 2015 04:33:36  0.835 \Y 0.094 £ 0.027
17 Feb 2015  04:43:57  0.850 I 0.099 + 0.027
17 Feb 2015 04:54:16  0.865 \Y 0.112 £+ 0.027
17 Feb 2015 05:04:36  0.880 I 0.163 £ 0.027
17 Feb 2015 05:14:55  0.894 \Y% 0.175 £ 0.027
17 Feb 2015 05:25:15  0.909 I 0.129 £ 0.027
17 Feb 2015 05:35:46  0.924 \Y% 0.139 £ 0.027
17 Feb 2015 05:46:06  0.939 I 0.099 + 0.028
17 Feb 2015 05:56:25  0.954 \Y 0.063 £ 0.027
17 Feb 2015 06:06:45  0.969 I 0.144 + 0.028
17 Feb 2015  06:17:03  0.984 \Y 0.094 £ 0.027

Continued on next page

XLIX



Table D.1 — continued from previous page

Date Time* Phase® Filter® Relative?
(UT) Magnitude

Note: Information about specific observing runs can be found in
Table 4.2.

@ Times have been corrected for light travel time between the object
and the observer.

® The phase as calculated for Figure 4.1 and Figure 4.4.
¢ Johnson-Cousins

4 The magnitude given is relative to the mean of 4th order Fourier
fit to the data as described in Section 2.5.

E Anchises Color Data
Table E.1: V — I Color Variation for 1173 Anchises

Date Time® Phase’ Relative®
(UT) V — I (mag)
8 Aug 2011 23:05:35 0.299 -0.001 + 0.042
8 Aug 2011 23:15:00 0.312  0.024 + 0.035
8 Aug 2011 23:22:22  0.323  0.002 + 0.030
8 Aug 2011 23:25:11 0.327 -0.011 + 0.029
8 Aug 2011 23:28:00 0.331 -0.035 + 0.029
8 Aug 2011 23:30:49 0.335 -0.018 + 0.028
8 Aug 2011 23:33:37  0.339 -0.002 + 0.030
8 Aug 2011 23:36:24 0.343 -0.032 + 0.043
8 Aug 2011 23:39:13  0.347 -0.058 + 0.054
8 Aug 2011 23:42:01 0.351 -0.016 + 0.040
8 Aug 2011 23:44:50 0.355  0.008 + 0.036
8 Aug 2011 23:47:38 0.359 -0.030 + 0.051
8 Aug 2011 23:50:26  0.363 -0.039 + 0.064
8 Aug 2011 23:53:15 0.367 -0.026 + 0.050
8 Aug 2011 23:56:03 0.371 -0.080 + 0.070
9 Aug 2011 00:01:38 0.379 -0.023 + 0.078
9 Aug 2011 00:04:26  0.383 -0.025 + 0.051
9 Aug 2011 00:09:38 0.391  0.029 + 0.039
9 Aug 2011 00:12:26  0.395 -0.021 + 0.034
9 Aug 2011 00:15:14 0.399 -0.046 + 0.035
9 Aug 2011 00:18:04 0.403  0.001 + 0.029
9 Aug 2011 00:20:51 0.407  0.004 + 0.028
9 Aug 2011 00:23:40 0.411  0.005 + 0.031
9 Aug 2011 00:26:27 0.415 0.010 + 0.031
9 Aug 2011 00:29:16  0.419 -0.020 £+ 0.024
9 Aug 2011 00:32:04 0.423  0.008 + 0.024
9 Aug 2011 00:34:53 0.427  0.003 + 0.024
9 Aug 2011 00:37:41 0.431 -0.007 £+ 0.024
9 Aug 2011 00:40:31 0.435 -0.021 + 0.023
9 Aug 2011 00:43:19 0.439 -0.028 + 0.024
9 Aug 2011 00:46:08 0.443 -0.004 + 0.026
9 Aug 2011 00:48:56  0.447 -0.014 + 0.026
9 Aug 2011 00:51:46 0.451  0.011 + 0.026
9 Aug 2011 00:54:54 0.456 -0.002 £+ 0.037
9 Aug 2011 00:57:42 0.460 0.018 + 0.058

9 Aug 2011 01:00:31 0.464 -0.037 + 0.134
9 Aug 2011 01:03:19 0.468 -0.022 £+ 0.037
Continued on next page




Table E.1 — continued from previous page

Date Time®* Phase’ Relative®
(UT) V — I (mag)
9 Aug 2011 01:06:08 0.472 0.009 + 0.021
9 Aug 2011 01:08:56 0.476 -0.002 + 0.020
9 Aug 2011 01:11:45 0480 0.015 + 0.021
9 Aug 2011 01:14:32  0.484  0.006 + 0.022
9 Aug 2011 01:17:20 0.488  0.016 + 0.025
9 Aug 2011 01:20:09 0.492 -0.009 + 0.037
9 Aug 2011 01:22:56 0.496 0.010 + 0.076
9 Aug 2011 01:28:32  0.504 -0.025 + 0.078
9 Aug 2011 01:31:21  0.508  0.028 + 0.072
9 Aug 2011 01:34:08 0.512  0.005 + 0.125
9 Aug 2011 01:36:57 0.516  0.035 + 0.070
9 Aug 2011 01:39:58 0.520 -0.020 + 0.032
9 Aug 2011 01:42:47 0.524  0.002 + 0.030
9 Aug 2011 01:45:35 0.529  0.013 + 0.026
9 Aug 2011 01:48:23 0.533  0.012 + 0.027
9 Aug 2011 01:51:10 0.537 -0.021 + 0.033
9 Aug 2011 01:53:58 0.541  0.005 + 0.050
9 Aug 2011 01:56:46  0.545 -0.048 + 0.075
9 Aug 2011 01:59:34  0.549 -0.023 + 0.070
9 Aug 2011 02:02:22 0.553 -0.018 £+ 0.037
9 Aug 2011 02:05:10 0.557 -0.026 + 0.029
9 Aug 2011 02:07:58 0.561 -0.034 + 0.023
9 Aug 2011 02:10:47 0.565 -0.021 + 0.022
9 Aug 2011 02:13:36  0.569 -0.009 + 0.021
9 Aug 2011 02:16:24 0.573 -0.018 + 0.018
9 Aug 2011 02:19:13 0.577  0.016 + 0.018
9 Aug 2011 02:22:01 0.581  0.033 + 0.018
9 Aug 2011 02:24:55 0.585  0.019 + 0.018
9 Aug 2011 02:27:43 0.589  0.017 £+ 0.018
9 Aug 2011 02:30:31 0.593  0.024 + 0.018
9 Aug 2011 02:33:19 0.597  0.027 + 0.020
9 Aug 2011 02:36:08 0.601  0.018 + 0.018
9 Aug 2011 02:38:56  0.605 0.032 + 0.018
9 Aug 2011 02:41:45 0.609  0.030 + 0.017
9 Aug 2011 02:44:32 0.613  0.049 + 0.017
9 Aug 2011 02:47:21 0.617 0.042 + 0.018
9 Aug 2011 02:50:10 0.621  0.045 + 0.018
9 Aug 2011 02:52:59 0.625  0.035 + 0.017
9 Aug 2011 02:55:46 0.629  0.028 + 0.018
9 Aug 2011 02:58:35 0.633  0.040 + 0.018
9 Aug 2011 03:01:24 0.637  0.042 + 0.018
9 Aug 2011 03:04:13 0.641  0.039 + 0.018
9 Aug 2011 03:07:01 0.645 0.029 + 0.018
9 Aug 2011 03:10:02 0.650  0.027 + 0.018
9 Aug 2011 03:12:51 0.654  0.034 + 0.018
9 Aug 2011 03:15:40 0.658  0.040 + 0.018
9 Aug 2011 03:18:28 0.662  0.034 + 0.018
9 Aug 2011 03:21:16 0.666  0.037 + 0.018
9 Aug 2011 03:24:05 0.670 0.041 + 0.018
9 Aug 2011 03:26:53 0.674  0.022 + 0.018
9 Aug 2011 04:00:11 0.722 -0.013 + 0.019
9 Aug 2011 04:03:00 0.726 -0.008 + 0.021
9 Aug 2011 04:05:49 0.730 -0.015 4+ 0.027

Continued on next page
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Table E.1 — continued from previous page

Date Time®* Phase’ Relative®
(UT) V — I (mag)
9 Aug 2011 04:08:36 0.734 -0.017 £+ 0.031
9 Aug 2011 04:11:25 0.738 -0.020 + 0.032
9 Aug 2011 04:14:13 0.742 -0.016 + 0.028
9 Aug 2011 04:17:01  0.746 -0.031 + 0.022
9 Aug 2011 04:19:50 0.750 -0.001 + 0.024
9 Aug 2011 04:22:38 0.754 -0.008 + 0.025
9 Aug 2011 04:25:26  0.758 -0.002 + 0.023
9 Aug 2011 04:28:13 0.762  0.003 + 0.022
9 Aug 2011 04:31:02 0.766  0.005 + 0.022
9 Aug 2011 04:33:50 0.770  0.025 + 0.026
9 Aug 2011 04:36:39 0.774  0.020 + 0.027
9 Aug 2011 04:39:27 0.778 -0.014 + 0.023
9 Aug 2011 04:42:36  0.783  0.004 + 0.022
9 Aug 2011 04:45:24 0.787  0.004 + 0.023
9 Aug 2011 04:48:12 0.791  0.006 + 0.023
9 Aug 2011 04:51:01  0.795  0.027 + 0.023
9 Aug 2011 04:53:49 0.799  0.029 + 0.023
9 Aug 2011 04:56:38 0.803  0.035 + 0.023
9 Aug 2011 04:59:26  0.807  0.029 + 0.023
9 Aug 2011 05:02:15 0.811  0.023 + 0.023
9 Aug 2011 05:05:03 0.815 0.018 + 0.023
9 Aug 2011 05:07:52 0.819  0.036 + 0.024
9 Aug 2011 05:10:40 0.823  0.026 + 0.024
9 Aug 2011 05:13:29 0.827  0.021 + 0.025
9 Aug 2011 05:16:16  0.831  0.018 + 0.023
9 Aug 2011 05:19:04 0.835 0.034 + 0.024
9 Aug 2011 05:21:52 0.839  0.004 + 0.024
9 Aug 2011 05:24:40 0.843  0.010 + 0.025
9 Aug 2011 05:28:49 0.849 -0.002 + 0.027
9 Aug 2011 05:31:38 0.853 -0.031 + 0.051
9 Aug 2011 05:34:27 0.857  0.005 + 0.039
9 Aug 2011 05:37:16  0.861  0.020 + 0.029
9 Aug 2011 05:40:04 0.865 0.031 + 0.038
9 Aug 2011 05:42:52 0.869 -0.005 + 0.050
9 Aug 2011 05:45:40 0.873 -0.031 + 0.054
9 Aug 2011 05:48:29 0.877 -0.038 + 0.050
9 Aug 2011 05:51:17 0.881 -0.010 + 0.081
9 Aug 2011 05:54:04 0.885 -0.039 + 0.064
9 Aug 2011 05:56:55 0.889 -0.019 + 0.061
9 Aug 2011 05:59:43 0.893 -0.026 + 0.038
9 Aug 2011 06:02:32 0.897 -0.009 + 0.028
9 Aug 2011 06:05:19 0.901 -0.028 + 0.034
9 Aug 2011 06:08:08 0.905  0.007 + 0.034
9 Aug 2011 06:10:55 0.909 -0.015 + 0.030
9 Aug 2011 06:13:49 0.914 -0.003 + 0.026
9 Aug 2011 06:16:37 0.918  0.004 + 0.022
9 Aug 2011 06:19:25 0.922 -0.001 + 0.021
9 Aug 2011 06:22:14 0.926 -0.000 + 0.021
9 Aug 2011 06:25:02 0.930 -0.005 + 0.022
9 Aug 2011 06:27:50 0.934 -0.004 + 0.023
9 Aug 2011 06:30:38 0.938 -0.005 + 0.040
9 Aug 2011 06:33:27 0.942 -0.047 + 0.033
9 Aug 2011 06:36:15 0.946 -0.008 + 0.024

Continued on next page
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Table E.1 — continued from previous page

Date Time®* Phase’ Relative®
(UT) V — I (mag)
9 Aug 2011 06:39:05 0.950 -0.007 + 0.027
9 Aug 2011 06:41:55 0.954 0.013 + 0.038
9 Aug 2011 06:44:43 0.958  0.019 + 0.038
9 Aug 2011 06:47:31 0.962 -0.025 + 0.029
9 Aug 2011 06:50:19 0.966 -0.019 + 0.027
9 Aug 2011 06:53:07 0.970 -0.015 + 0.023
9 Aug 2011 06:55:55 0.974 -0.017 + 0.020
9 Aug 2011 06:58:45 0.978 -0.014 + 0.019
9 Aug 2011 07:01:33 0.982  0.001 + 0.019
9 Aug 2011 07:04:22 0.986 0.019 + 0.018
9 Aug 2011 07:07:11 0.990 0.021 + 0.018
9 Aug 2011 07:09:59 0.994 -0.002 + 0.018
9 Aug 2011 07:12:46 0.998  0.002 + 0.018
9 Aug 2011 07:15:34 0.002 0.014 + 0.018
9 Aug 2011 07:18:21 0.006 0.014 + 0.018
9 Aug 2011 07:21:09 0.010  0.015 + 0.018
9 Aug 2011 07:23:57 0.014 0.012 + 0.018
9 Aug 2011 07:26:44 0.018  0.006 + 0.017
9 Aug 2011 07:29:33 0.022  0.005 + 0.017
9 Aug 2011 07:32:21 0.026 -0.008 + 0.017
9 Aug 2011 07:35:09 0.030 -0.014 + 0.018
9 Aug 2011 07:37:56 0.034 -0.001 + 0.018
9 Aug 2011 07:40:45 0.038 -0.014 £+ 0.017
9 Aug 2011 07:43:35 0.042 -0.024 + 0.017
9 Aug 2011 07:46:24 0.047 -0.024 + 0.017
9 Aug 2011 07:49:12 0.051 -0.018 + 0.017
9 Aug 2011 07:52:00 0.055 -0.008 + 0.017
9 Aug 2011 07:54:48 0.059 -0.009 + 0.017
9 Aug 2011 07:57:37 0.063 -0.012 + 0.017
9 Aug 2011 08:00:24 0.067 -0.021 + 0.017
9 Aug 2011 08:03:14 0.071 -0.011 £+ 0.017
9 Aug 2011 08:06:02 0.075 -0.002 + 0.017
9 Aug 2011 08:08:51 0.079 -0.005 + 0.017
30 Sept 2012 01:10:59 0.748 0.013 + 0.024
30 Sept 2012 01:21:09 0.763  0.005 + 0.024
30 Sept 2012 01:36:22 0.785  -0.033 + 0.024
30 Sept 2012 01:46:18 0.799 -0.008 + 0.023
30 Sept 2012 01:51:23 0.806  0.031 + 0.023
30 Sept 2012 01:56:28 0.814  0.020 + 0.023
30 Sept 2012 02:01:33  0.821  0.043 + 0.023
30 Sept 2012 02:06:38 0.828  0.035 + 0.023
30 Sept 2012 02:11:43 0.836  0.022 + 0.023
30 Sept 2012 02:20:57 0.849 -0.000 + 0.023
30 Sept 2012 02:26:01 0.856 -0.016 + 0.023
30 Sept 2012 02:31:06 0.863 -0.028 + 0.023
30 Sept 2012 02:36:10 0.871  -0.004 + 0.023
30 Sept 2012 02:41:15 0.878  0.001 + 0.023
30 Sept 2012 02:46:20 0.885 -0.031 + 0.023
30 Sept 2012 02:55:39 0.899  0.018 + 0.022
30 Sept 2012 03:00:44 0.906 -0.004 + 0.022
30 Sept 2012 03:05:49 0.913  0.002 + 0.022
30 Sept 2012 03:10:53 0.921  0.007 + 0.022
30 Sept 2012 03:15:57 0.928 -0.019 + 0.022
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Table E.1 — continued from previous page

Date Time® Phase’ Relative®
(UT) V — I (mag)
30 Sept 2012 03:21:02 0.935 0.028 + 0.022
30 Sept 2012 03:30:41 0.949 0.012 £+ 0.021
30 Sept 2012 03:35:45 0.956 -0.007 + 0.022
30 Sept 2012 03:40:50 0.964 -0.001 + 0.022
30 Sept 2012 03:45:54 0.971 -0.003 + 0.021
30 Sept 2012 03:50:59 0.978  0.003 + 0.021
30 Sept 2012 03:56:03 0.985  0.006 + 0.021
30 Sept 2012 04:13:49 0.011  0.010 £+ 0.021
30 Sept 2012 04:18:53 0.018  0.006 + 0.020
30 Sept 2012 04:23:58 0.025 -0.013 + 0.021
30 Sept 2012 04:29:02 0.033 -0.004 + 0.021
30 Sept 2012 04:34:07 0.040 0.012 + 0.021
30 Sept 2012 04:42:56  0.053  0.009 + 0.021
30 Sept 2012 04:48:01  0.060 -0.006 + 0.021
30 Sept 2012 04:53:05 0.067  0.005 + 0.021
30 Sept 2012 04:58:09 0.075 -0.001 + 0.021
30 Sept 2012 05:03:14 0.082  0.003 + 0.021
30 Sept 2012 05:08:19 0.089  0.001 + 0.021
30 Sept 2012 05:17:16 0.102  0.006 + 0.021
30 Sept 2012 05:22:21  0.109 -0.011 £+ 0.021
30 Sept 2012 05:27:25 0.117 -0.006 + 0.021
30 Sept 2012 05:32:30 0.124 -0.005 + 0.021
30 Sept 2012 05:37:34 0.131  -0.007 + 0.021
30 Sept 2012 05:42:39 0.138  0.009 + 0.021
30 Sept 2012 05:51:33 0.151  0.006 + 0.022
30 Sept 2012 05:56:38 0.158 -0.010 + 0.022
30 Sept 2012 06:01:42 0.166  0.004 + 0.022
30 Sept 2012 06:06:47 0.173  -0.020 + 0.022
30 Sept 2012 06:11:52  0.180 -0.015 + 0.022
30 Sept 2012 06:16:56  0.188  0.017 + 0.023
6 Oct 2012 23:33:30 0.080 -0.009 + 0.024
6 Oct 2012 23:44:35 0.096  0.003 4+ 0.025
6 Oct 2012 23:55:41 0.112 -0.023 + 0.023
7 Oct 2012 00:13:52  0.138 -0.005 + 0.020
7 Oct 2012 00:24:06 0.153  0.019 + 0.019
7 Oct 2012 00:33:31  0.166 -0.005 4+ 0.018
7 Oct 2012 00:52:50 0.194 -0.007 4+ 0.018
7 Oct 2012 00:58:54 0.202  0.000 + 0.018
7 Oct 2012 01:26:36 0.242  0.003 + 0.018
7 Oct 2012 01:32:40 0.251  0.004 + 0.019
7 Oct 2012 01:38:45 0.260 -0.005 4+ 0.019
7 Oct 2012 01:44:49 0.268 -0.008 + 0.019
7 Oct 2012 01:50:55 0.277 -0.006 + 0.020
7 Oct 2012 02:00:21 0.291 -0.001 + 0.019
7 Oct 2012 02:06:25 0.299 -0.003 + 0.018
7 Oct 2012 02:12:30 0.308 -0.007 + 0.018
7 Oct 2012 02:18:35 0.317 -0.011 4+ 0.019
7 Oct 2012 02:24:39 0.326  0.005 + 0.018
7 Oct 2012 02:34:01 0.339 0.002 + 0.018
7 Oct 2012 02:40:05 0.348 -0.000 + 0.018
7 Oct 2012 02:46:10 0.356 -0.006 + 0.018
7 Oct 2012 02:52:15 0.365 -0.005 4+ 0.018
7 Oct 2012 02:58:18 0.374 -0.004 + 0.018
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Table E.1 — continued from previous page

Date Time® Phase’ Relative®
(UT) V — I (mag)

b—

7 Oct 2012 03:07:24 0.387  0.001 £ 0.018
7 Oct 2012 03:13:29  0.396 -0.003 + 0.018
7 Oct 2012 03:19:34  0.404 0.018
7 Oct 2012 03:25:38  0.413  -0.00 .018
7 Oct 2012 03:31:43 0.422  -0.00 018
7 Oct 2012 03:41:18 0.436 -0.00 018
7 Oct 2012 03:47:23 0.444  0.00 018
7 Oct 2012 03:53:28 0.453  0.00 018
7 Oct 2012 03:59:32  0.462 -0.00 .018
7 Oct 2012 04:05:37  0.471  -0.00 .018
7 Oct 2012 04:14:33 0483  0.01 018
7 Oct 2012 04:20:38 0.492  0.00

7 Oct 2012 04:26:43 0.501  0.00
7 Oct 2012 04:32:47  0.510 -0.00
7 Oct 2012 04:38:52  0.518  0.00
7 Oct 2012 04:47:41 0.531  0.00

1
o
o
S
S+t CRIO®

TUE =
o
=
(%)

018
018
.018
018

NN

7 Oct 2012 04:53:46  0.540 -0.003 018
7 Oct 2012 04:59:51  0.548 -0.001 018
7 Oct 2012 05:05:55  0.557  0.003 018
7 Oct 2012 05:12:00  0.566  0.009 018
7 Oct 2012 05:20:53  0.579  -0.007 018
7 Oct 2012 05:26:57  0.587  0.001 018
7 Oct 2012 05:33:02  0.596 -0.002 .018
20 Sept 2013  03:31:02  0.989  1.023 .050
20 Sept 2013 03:41:26  0.004  0.330 .045

20 Sept 2013 03:51:50 0.019 -0.12
20 Sept 2013 04:02:14 0.034  -0.05
20 Sept 2013 04:12:38  0.049 -0.17
20 Sept 2013 04:27:46  0.071 -0.01
20 Sept 2013 04:38:09 0.086  0.05
20 Sept 2013 04:48:33  0.100 -0.07
20 Sept 2013 04:58:56  0.115 -0.05
20 Sept 2013 05:09:20 0.130  -0.07
20 Sept 2013  05:23:58  0.151  -0.00
20 Sept 2013  05:34:22  0.166  0.06
20 Sept 2013 05:44:45 0.181  0.01
20 Sept 2013  05:55:09  0.196  0.00
20 Sept 2013 06:05:33  0.211  0.00
20 Sept 2013 06:19:41  0.231 -0.03
20 Sept 2013 06:30:06  0.246
20 Sept 2013 06:40:30  0.261
20 Sept 2013  06:50:54  0.276 -0.02
20 Sept 2013 07:01:18 0.291 -0.04
20 Sept 2013 07:15:16  0.311  -0.06
20 Sept 2013  07:25:40 0.326 -0.03
20 Sept 2013 07:36:04 0.341  -0.00
20 Sept 2013 07:46:28  0.356
20 Sept 2013  08:40:43 0.434 -0.06
20 Sept 2013 08:51:06  0.449 -0.05
20 Sept 2013  09:03:48  0.467 -0.05
20 Sept 2013 09:14:12  0.482  0.04
20 Sept 2013 09:24:36  0.497
20 Sept 2013  09:35:01  0.512 -0.037 * 0.042
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Table E.1 — continued from previous page

Date Time® Phase’ Relative®
(UT) V — I (mag)

20 Sept 2013 09:45:24 0.527 -0.068 + 0.042
20 Sept 2013 09:58:21  0.545 -0.077 + 0.042
20 Sept 2013 10:08:45 0.560 -0.025 + 0.042
20 Sept 2013 10:19:09 0.575 -0.011 + 0.042
20 Sept 2013  10:29:33  0.590 -0.003 + 0.042
20 Sept 2013 10:39:57  0.605 -0.026 + 0.042
20 Sept 2013 10:53:23  0.624 -0.028 + 0.042
20 Sept 2013 11:03:46 0.639  0.007 + 0.042
20 Sept 2013 11:14:10 0.654  0.021 + 0.042
20 Sept 2013  11:24:36  0.669 -0.070 + 0.042
20 Sept 2013 11:35:00 0.684 -0.057 + 0.042
25 Sept 2013  03:09:28 0.295  0.163 + 0.043
25 Sept 2013  03:24:22 0.316  0.119 + 0.042
25 Sept 2013  03:34:45 0.331  0.069 + 0.042
25 Sept 2013  03:45:09 0.346  0.145 + 0.042
25 Sept 2013  05:02:03  0.457  0.149 + 0.042
25 Sept 2013  05:16:09 0.477  0.158 + 0.042
25 Sept 2013 05:26:33  0.492  0.051 + 0.042
25 Sept 2013  05:36:56  0.507  0.027 + 0.042
25 Sept 2013 05:47:21  0.522  -0.029 + 0.042
25 Sept 2013 05:57:44 0.537 -0.055 + 0.042
25 Sept 2013 06:11:19  0.556  -0.096 + 0.042
25 Sept 2013  06:21:42 0.571  -0.146 + 0.042
25 Sept 2013 06:32:05 0.586 -0.034 + 0.042
25 Sept 2013  06:42:28 0.601  -0.054 + 0.042
25 Sept 2013  06:52:52  0.616  -0.154 + 0.042
25 Sept 2013 07:06:28 0.635 -0.007 + 0.042
25 Sept 2013  07:16:51  0.650  0.090 + 0.042
25 Sept 2013  07:27:14 0.665 0.046 + 0.042
25 Sept 2013 07:37:37 0.680  0.018 + 0.042
25 Sept 2013 07:48:01  0.695 -0.035 + 0.042
25 Sept 2013  08:01:07 0.714 -0.126 + 0.042
25 Sept 2013  08:11:30  0.729  -0.067 + 0.042
25 Sept 2013  08:21:53  0.743  -0.026 + 0.042
25 Sept 2013  08:32:16  0.758  -0.018 + 0.042
25 Sept 2013 08:42:40 0.773 -0.114 + 0.042
25 Sept 2013 08:55:20 0.792  -0.035 + 0.042
25 Sept 2013  09:05:44 0.806 -0.025 + 0.042
25 Sept 2013  09:16:07 0.821  -0.065 + 0.042
25 Sept 2013  09:26:30 0.836  0.028 + 0.042
25 Sept 2013 09:36:54 0.851  -0.047 + 0.042
25 Sept 2013 09:49:57  0.870 -0.056 + 0.042
25 Sept 2013  10:00:21  0.885  0.047 + 0.042
25 Sept 2013  10:10:43 0.900 0.036 + 0.042
25 Sept 2013 10:21:06 0.915  0.025 + 0.042
25 Sept 2013 10:31:30  0.930 -0.010 + 0.042
25 Sept 2013  10:44:31  0.948  0.000 + 0.042
25 Sept 2013  10:54:54 0.963  0.030 + 0.042
25 Sept 2013  11:05:18  0.978  -0.087 + 0.042
25 Sept 2013  11:15:41 0.993  -0.084 + 0.042
25 Sept 2013  11:26:04 0.008 -0.089 + 0.042
25 Sept 2013  11:41:04 0.029  0.097 + 0.042

8 Feb 2015 02:07:32 0.019 -0.001 + 0.038
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Table E.1 — continued from previous page

Date Time®* Phase’ Relative®
(UT) V — I (mag)
8 Feb 2015 02:28:26 0.049 -0.008 &+ 0.037
8 Feb 2015 02:48:21 0.078 -0.011 + 0.037
8 Feb 2015 03:07:18 0.105  0.000 + 0.038
8 Feb 2015 03:26:18 0.132  0.000 4+ 0.038
8 Feb 2015 03:45:17 0.160  0.018 4+ 0.038
8 Feb 2015 04:04:16 0.187  0.012 + 0.038
8 Feb 2015 04:23:14 0.214  0.040 4+ 0.038
8 Feb 2015 04:42:55 0.242  0.051 + 0.038
8 Feb 2015 05:01:53 0.270  0.075 + 0.038
8 Feb 2015 05:20:52 0.297  0.039 + 0.039
8 Feb 2015 05:39:51 0.324  0.037 + 0.039
8 Feb 2015 05:58:50 0.351 -0.010 + 0.041
8 Feb 2015 06:17:49 0.379 -0.013 + 0.039
9 Feb 2015 01:32:52 0.037  0.002 + 0.038
9 Feb 2015 01:51:52 0.064 -0.000 + 0.037
9 Feb 2015 02:10:50 0.091 -0.000 + 0.037
9 Feb 2015 02:28:11 0.116  0.019 + 0.038
9 Feb 2015 02:45:29 0.141  0.008 + 0.038
9 Feb 2015 03:02:49 0.166  0.010 + 0.038
9 Feb 2015 03:20:26  0.191  0.008 4+ 0.038
9 Feb 2015 03:37:44 0.216 0.012 + 0.038
9 Feb 2015 03:55:03 0.241  0.028 4+ 0.038
9 Feb 2015 04:12:48 0.266  0.027 + 0.038
9 Feb 2015 04:30:06 0.291  0.032 4+ 0.038
9 Feb 2015 04:47:25 0.316 0.036 + 0.038
9 Feb 2015 05:05:16 0.342  0.046 4+ 0.038
9 Feb 2015 05:22:35 0.367 0.031 + 0.039
9 Feb 2015 05:39:54 0.391  0.031 + 0.039
9 Feb 2015 05:57:17 0.416  0.044 + 0.039
9 Feb 2015 06:14:41 0.441  0.051 4+ 0.039
16 Feb 2015 01:39:37 0.518 -0.018 + 0.038
16 Feb 2015 01:56:55 0.543 -0.016 + 0.038
16 Feb 2015 02:14:26 0.568 -0.003 + 0.038
16 Feb 2015 02:31:43 0.593 -0.025 + 0.038
16 Feb 2015 02:50:00 0.619 -0.027 + 0.038
16 Feb 2015 03:07:18 0.644 -0.028 + 0.038
16 Feb 2015 03:24:37 0.669 -0.044 + 0.038
16 Feb 2015 03:41:56 0.694 -0.040 + 0.038
16 Feb 2015 03:59:17 0.718 -0.063 + 0.038
16 Feb 2015 04:16:37 0.743 -0.052 + 0.038
16 Feb 2015 04:33:55 0.768 -0.046 + 0.038
16 Feb 2015 04:51:15 0.793 -0.055 + 0.038
16 Feb 2015 05:08:40 0.818  0.004 + 0.038
16 Feb 2015 05:26:00 0.843 -0.059 + 0.038
16 Feb 2015 05:43:19 0.868 -0.061 + 0.038
16 Feb 2015 06:00:38 0.893 -0.065 + 0.038
17 Feb 2015 01:09:48 0.543  0.086 + 0.065
17 Feb 2015 01:27:22 0.568  0.002 + 0.038
17 Feb 2015 01:48:12 0.598 -0.013 + 0.038
17 Feb 2015 02:08:52 0.627 -0.018 + 0.038
17 Feb 2015 02:29:31 0.657  0.022 + 0.038
17 Feb 2015 02:50:21 0.687 -0.027 + 0.038
17 Feb 2015 03:11:00 0.717 -0.011 + 0.038

Continued on next page
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Table E.1 — continued from previous page

Date Time®* Phase’ Relative®
(UT) V — I (mag)
17 Feb 2015 03:31:40 0.746  0.008 + 0.038
17 Feb 2015 03:52:19 0.776 -0.002 + 0.038
17 Feb 2015 04:12:57 0.805  0.008 + 0.038
17 Feb 2015 04:33:36  0.835 -0.004 + 0.038
17 Feb 2015 04:54:16 0.865 -0.014 4+ 0.038
17 Feb 2015 05:14:55 0.894  0.034 + 0.038
17 Feb 2015 05:35:46 0.924  0.030 + 0.038
17 Feb 2015 05:56:25 0.954 -0.053 + 0.039
17 Feb 2015 06:17:03 0.984 -0.067 + 0.039

Note: Information about specific observing runs can be
found in Table 4.2.
¢ Times have been corrected for light travel time between
the object and the observer. The times given here
correspond to the V' Filter observations in Table D.1.

b The phase as calculated for Figure 4.1 and Figure 4.4.

¢ The magnitude given is Johnson-Cousins V minus the I
magnitude interpolated to the time of the V' observations
found in Table D.1 and relative to the mean of the epoch.
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