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ABSTRACT

High-resolution interferometric imaging is currently the most accurate technique to image

the surfaces of stars. However, optical interferometric imaging is a difficult ill-posed problem

where a handful of imaging codes are able to find a solution, especially in three dimensions.

We present the development of a 3D interferometric image reconstruction code, which has the

capabilities to model/image the surfaces of spherical, spheroid, and Roche objects. We apply

our open source code to two different data sets. The first application is for the RS CVn vari-

able, λ Andromedae, using archival interferometric data from the CHARA Array obtained

with the MIRC instrument at two different epochs to better understand the evolution of its

surface features. We are able to obtain precise measurements of its physical parameters as

well as images of its surface detailing large-scale magnetic spots. Our results show that the

reconstructed images of λ Andromedae have starspots that seem to favor certain northern

latitudes with very minimal to no spot activity in the southern latitudes, indicative of a non-

solar dynamo. The second application is for the rapidly rotating star, Alderamin, with data

obtained from CHARA with the MIRC-X instrument to continue unveiling the complexities

of the internal mechanisms of rapid rotation. We present our preliminary imaging results,

which show a slightly lower angular velocity compared to previous works along with a weak

limb-darkening. These new results provide a quantitative result for limb-darkening for rapid

rotators, which has not been explored before. In addition to our rapid rotator imaging, we

integrate new a gravity darkening law, which will serve as improved initial parameter esti-

mates for future imaging campaigns. To complement future imaging campaigns, we present

preliminary results for a novel multi-beam atmospheric turbulence simulator that can be

used to study free-space beam propagation. This latter project will serve as the ground-

work for having movable telescopes at interferometric arrays, such as the CHARA Array,

which will provide more (u,v) coverage and ultimately improve the quality of interferometric



imaging. We use our simulator to investigate beam combination under severe ground layer

turbulence conditions.

INDEX WORDS: Aperture synthesis, Astronomy software, High angular resolution,
Long baseline interferometry, Oblate stars, Observational astron-
omy, Optical interferometry, RS Canum Venaticorum variable stars,
Starspots
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Chapter 1
INTRODUCTION

1.1 The Beginnings of Interferometry

The beginning of interferometry can be traced back to the origin of wave theory in the 17th

century and the eventual introduction of interference of waves in the 19th century. The

concept of a wavelength began with experiments done by Robert Hooke (among others, such

as Francesco M. Grimaldi and Ignace-Gaston Pardies). Hooke speculated that light traveled

in waves akin to that of water when perturbed and published these thoughts in his book

Micrographia in 1665. He was the first to discover thin-film interference and its diffraction

properties, and in 1672 noted that these vibrations of light are perpendicular to the direction

of propagation.

A few years later, Christiaan Huygens wrote a mathematical interpretation of these vi-

brations in his book Treatise on Light in 1690. Additionally, he proposed that these light

waves traveled through a medium called an “aether” that filled the void of space. The Huy-

gens’ principle was contrived and described that light consisted of an aggregate of spherical

wavelets. As light is propagated, the secondary waves can then be made up of an aggre-

gate of these individual first wavelets. While this theory formed the basis for understanding

wave propagation, diffraction, and reflection, it was not widely accepted at the time. The

most dominantly accepted and recognized theory during the late 17th century and early

18th century was the corpuscular theory of light and was backed by famous scientists like

Isaac Newton. Newton explained within his book Opticks in 1704 that light was comprised

of particles with internal vibrations instead of spherical wavelets, and Newton’s reverence

within the natural sciences led to the corpuscular theory being the leading view until the

experiments of Thomas Young proved otherwise.
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1.1.1 The First Experiments Obtaining Interference Patterns

In 1803, Young presented the first evidence of wave interference by passing sunlight through

a pinhole and splitting the light coming from that pinhole with a narrow card (around

0.85 mm wide). The split beams of light landed on a screen and started overlapping against

one another, creating bands of bright and dark patches of light or interference fringes. Young

noted that when one beam of light was blocked, the places where the dark bands used to be

disappeared, and the intensity on the screen was completely uniform. When he slowly added

in the intensity of the second beam, the intensity of the dark bands was reduced while the

intensity of the bright bands increased, thus increasing the contrast of the fringes. Young

later updated his experiment to the now-famous double-slit experiment that was published

in 1807 (where two pinholes or slits were used to split light and obtain fringes), which laid

the groundwork for the acceptance of light wave theory.

Young’s experiment was followed by many other interferometric experiments, such as

Augustin-Jean Fresnel, who further refined the nature of light diffraction effects in 1818.

The application of modern interferometers first started with Armand Hippolyte L. Fizeau

and his proposition to test the aether theory. In 1851, Fizeau measured the speed of light and

while doing so he concluded that there was indeed a drag across this aether (Fizeau 1868).

In addition, Fizeau was the first to suggest that interferometers could be the instruments

that could one day measure the angular diameters of stellar objects (Vaughan 1967). In

1881, Albert A. Michelson constructed his own interferometer to prove the movement of

the aether drag. While his first instrument failed to make any discernible measurements

of aether drag, the Michelson interferometer design proved to be useful for getting more

accurate measurements of the speed of light. Later in 1887, Michelson, in collaboration

with Edward W. Morley, improved upon Michelson’s original 1881 interferometric design

and found no evidence of the aether. While Michelson’s interferometric experiments tested

the aether theory while consequently obtaining accurate measurements for the speed of light,

it also laid the foundation for obtaining stellar interferometric measurements.
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In Michelson’s 1891 paper, perhaps following the idea proposed by Fizeau a few decades

before, Michelson explained that one could obtain the angular diameter of a single star or

the angular separation of binary systems. The concept for obtaining such measurements was

that if one had a large objective, two smaller portions of the objective at opposite sides would

be used as apertures, and the light would combine at the focus. By increasing the distance

between the two apertures until the fringes disappeared, one could then measure the angular

diameter or separation of the source(s) since these aperture separations are directly related

to the minimum fringe visibility (Michelson 1891a, 1920).

Michelson tested the method he proposed in 1891 of using slits as apertures to success-

fully measure the diameter of the Galilean moons (Michelson 1891b,c). While the method

Michelson proposed turned out to be quite accurate, the angular diameters of stars are much

smaller than that of the Galilean moons, and thus a different approach was needed. Michel-

son decided to make a new interferometer by using mirrors, instead of slits, at the 100 inch

Hooker telescope at Mount Wilson Observatory. This new interferometer consisted of four

mirrors on a 20-foot steel plate placed above the telescope. Michelson and Francis G. Pease

used this new design to measure the angular diameter of Betelgeuse and calculated it to be

47 mas (Michelson & Pease 1921), and thus recorded the first angular diameter measurement

of a star.

1.1.2 The Diffraction Limit of Telescopes and Interferometers

Without the use of interferometry, Michelson would have had a difficult time building a

single mirror telescope to resolve the angular diameter of Betelgeuse, especially with the

technology of the early 1920s. A telescope’s two limiting factors to measure the angular

diameter of an object are to collect enough light into your capturing device and resolve the

source. Taking a step back from interferometry, the requirements to resolve an object with

a single telescope comes from the Rayleigh criterion. This criterion is derived from an Airy

disk, where the intensity of the light distribution for an Airy disk is in the form of
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I(θ) = I0

(
2J1(2π

λ
R sin θ)

2π
λ
R sin θ

)2

= I0

(
2J1(x)

x

)2

(1.1)

where I0 is the maximum intensity of the pattern at the Airy disk center, J1 is the Bessel

function of the first kind of order one, λ is the observed wavelength, R is the radius of the

observing aperture, θ is the angle of the observed object (i.e., the angle made from a line

between the circular aperture center and the observed object’s outer most radius, and the

line between aperture center and the object’s center), and x = 2πR
λ

sin θ. If we look at the

first zero of the J1(x), then x ≈ 3.8317 and we get

2πR

λ
sin θ ≈ 3.8317. (1.2)

Given that astronomical objects small angular sizes in the sky, we can apply the small angle

approximation to Equation 1.2 to ultimately get the Rayleigh criterion of

θrad ≈ 1.22
λ

D
(1.3)

where θrad is the angular diameter of the object in radians, λ is the wavelength of the light

being collected in meters, and D is the diameter of the mirror or lens in meters.

Let us look back at Michelson and his studies from Betelgeuse. We can deduce that if

interferometry were not used at that time, Michelson would have needed to build a telescope

with an aperture of approximately 3 meters in diameter (assuming the middle of the visible

spectrum of 550 nm). If we take Equation 1.1 and modify it such that we use the distance

between two apertures for an interferometer instead of the radius of one observing aperture

for a single telescope, then it becomes

I(θ) = I0

(
2J1(2π

λ
B sin θ)

2π
λ
B sin θ

)2

(1.4)
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where B is the baseline or the distance between two apertures. The resolution of an inter-

ferometer is ultimately

θrad ≈ 1.22
λ

2B
. (1.5)

Instead, Michelson did his calculations with a 20-foot (∼6 meter) baseline interferometer to

be able and resolve Betelgeuse.

1.1.3 Theory of Interferometry

Interferometric experiments would not have been possible if it were not for the nature of

each respective light source. Regarding the discussion of light propagation and its observed

properties, a few terms must be defined for the discussion of wavelengths. A wavelength is

defined as the length between an arbitrary origin in a wave and the point where the slope

and concavity of the wave is the same as the origin (e.g., the length from one peak to the

next peak of a wave). The amplitude of each wavelength is characterized by the height of

each wave from the rest position, the phase is a quantity that defines the behavior of a wave

where the origin is any arbitrary point in time (usually the midpoint between the peak and

the trough), and the frequency is defined as the number of times that the wave oscillates

within a given unit time.

Light must ideally be coherent in order to interfere; however, that may not always be

possible. In order for light to be coherent to each other, it must have the same phase in

respect to each wave in the same wavefront. Astronomical objects originate as incoherent

sources, even when light is coming from the same object, but their large distances from

Earth turn them partially coherent. This idea of partial coherence originates from the van

Cittert-Zernike theorem (van Cittert 1934; Zernike 1938) named after Pieter H. van Cittert

and Frits Zernike, which states that the Fourier transform of the intensity distribution of

a distant, incoherent object is equivalent to the angular intensity distribution of the same

object (Labeyrie et al. 2006).
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How exactly did van Cittert and Zernike prove that incoherent sources such as astronom-

ical objects could provide information about objects’ angular size? We will follow the proof

written in Labeyrie et al. (2006) in order to derive the van Cittert-Zernike theorem. Let us

consider light arriving from a distant astronomical object to a given telescope as presented

in Figure 1.1 (which is adapted from a similar design within Labeyrie et al. 2006). The

telescope observing the object has its own z-axis which is defined along its optical axis with

object located within a close region to this z-axis. The intensity of the incoming light from

the source can be defined as I = 〈|A(l,m, n)|2〉t, where A is the amplitude of the optical

field which originates from the source and ~l ≡ (l,m, n) are the sky coordinates of the source.

Taking advantage of the fact that the source is close to the z-axis, then we can approximate

that l = sin θx ≈ θx and m = sin θy ≈ θy (based on small angle approximations) where the

(x, y, z) are the coordinates of the telescope’s optical axis. When z = 0, the optical field

is A(l,m)ei(ωt+k0
~l·r)dldm where ω = 2πc/λ is the circular frequency (and c is the speed of

light), t is time, −~l is the direction of light travel from the source with its corresponding

wavevector −k0
~l (being that k0 = 2π/λ is a wavenumber), and r = (x, y, z).

If we integrate the optical field, then we get

E(k0x, k0y) = eiωt
∫∫

A(l,m)ei(k0x+k0y)dldm (1.6)

and if we do the two-dimensional Fourier integral of Equation 1.6, we arrive at

E(k0x, k0y) = eiωta(−k0x,−k0y). (1.7)

If we define the spatial coherence function in the ground plane (x, y) as the time-averaged

cross correlation of the optical field

γ(k0r) = 〈E(k0r) ? E∗(−k0r)〉t = 〈a(−k0r) ? a∗(k0r)〉t (1.8)
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Figure 1.1 Geometry used in the proof of the Van Cittert-Zernike theorem. This figure has
a similar design and was originally adapted from Labeyrie et al. (2006).

where the eiωt term cancels out because of the multiplication with the complex conjugate.

We finally arrive at the Fourier transform of Equation 1.8 as

Γ(l,m) = 〈A(l,m) · A∗(l,m)〉t = 〈|A(l,m)|2〉t = I(l,m). (1.9)

thus proving the van Cittert-Zernike theorem (Labeyrie et al. 2006).

If we apply this theorem to Michelson’s experiment, we can directly compare that the

visibility of an interference fringe is directly related to the spatial coherence function (fol-

lowing another proof within Labeyrie et al. 2006). Let’s start with light coming from two

pinholes (similar to that of Young’s experiment) where the corresponding mean intensities of

each pinhole are A2
1 and A2

2 and the optical wave fields E(r) are normalized. The coherence

function now becomes

γ(r1, r2) =
〈A1E(r1) · A2E(r2)〉

A1A2

= 〈E(r1)E(r2)〉. (1.10)

7



These interference patterns result from the superposition between the optical fields coming

from each respective pinhole with a given phase difference δ. Therefore, the instantaneous

intensity of the interference pattern is

I(δ) = |A1E(r1) + A2E(r2)eiδ|2 (1.11)

= A2
1|E(r1)|2 + A2

2|E(r2)|2 + A1A2

[
|E(r1)E∗(r2)|eiδ + |E∗(r1)E(r2)|e−iδ

]
(1.12)

and by taking the time averages, the intensity becomes

I(δ) = A2
1 + A2

2 + A1A2

[
γeiδ + γ∗e−iδ

]
(1.13)

= A2
1 + A2

2 + 2A1A2|γ(r1, r2)| cos(δ + ∆) (1.14)

where ∆ is the position of the central fringe (Labeyrie et al. 2006).

In Michelson’s experiments (Michelson 1891a), he defined that the visibility V as a func-

tion of the relative intensities from the contrast of the fringes as

V =
Imax − Imin

Imax + Imin

=
Fringe amplitude

Average intensity
. (1.15)

If we now substitute in Equation 1.14 in Michelson’s definition of a visibility, this would

become

V =
2A1A2

A2
1 + A2

2

· |γ(r1, r2)|. (1.16)

This states that by measuring the visibility and the phase of the fringes, one can understand

the degree of coherence, which in turn will provide information about the angular size of the

source for astronomical objects (Labeyrie et al. 2006).
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Figure 1.2 A model of a simple interferometer depicting only two telescopes measuring the
intensity from a source. This figure was adapted from and has similar designs to that in
Monnier (2003) and Labeyrie et al. (2006).

1.1.4 Modern Observables in Interferometry

Modern interferometers are no longer restricted to the technology from Michelson’s era.

Instead of mounting two mirrors on a single large telescope, astronomers are now able to

construct facilities containing multiple telescopes with baselines ranging from a few meters

to kilometers. Specifically for optical interferometry (here, optical means the use of optics

within homodyne interferometry, not the optical wavelength regime), there are delay lines

to compensate for the fact that light may not get to each telescope at exactly the same

time, as shown in Figure 1.2. Since the light distribution of the source is measured by the

coherence function, which is in Fourier space, the separation of the telescopes in the plane

orthogonal to the direction of the source r = (l,m) is typically written in Fourier space as

u = (u, v) = r/λ, where λ is the wavelength and is the normalization term. Therefore, an

interferometer samples part of this (u, v) plane.
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While obtaining visibility measurements is useful for measuring angular sizes of objects,

reconstructing an image of an object requires more information than just visibilities. To

make an image requires knowledge of the atmosphere to correct for any corruption caused

by atmospheric turbulence. The turbulence in Earth’s atmosphere presents a large source

of issues with imaging. If one were to observe a single star, its light would reach the top

of Earth’s atmosphere as a plane wave. This light gets refracted by different temperature

cells within the atmosphere. By the time the star light reaches the ground layer, it will be

refracted numerous times by this turbulence, dispersing the light and causing it to no longer

travel as a plane wave. This will degrade the image quality and result in resolutions worse

than the diffraction limit. A measure of how much atmospheric turbulence there is in a given

image can be defined by the Fried coherence length (designated by r0; Fried 1965, 1966). In

the case of binary systems that are relatively close to each other in terms of angular distance,

the light from both stars reaches the top of Earth’s atmosphere as a plane wave. However,

these plane waves may be too close together such that each wave will go through the same

atmospheric patch and, by the time the light reaches a telescope, the binary system will

seem like light is coming from a single source (Roddier 1988).

The Fried parameter can vary based on the nature of the atmosphere and is often rep-

resented by the Kolmogorov theory of turbulence (Kolmogorov 1961; Tatarskii 1961). The

main two dependencies of how r0 is calculated are based on the turbulence strength, the

viewing angle of the target with respect to zenith, and wavelength. These astronomical see-

ing conditions, or the amount of turbulent airflow in the atmosphere, can be described by

generating a profile of the turbulence strength as a function of altitude (or height) in the at-

mosphere at a given observing site, otherwise known as the C2
n profile. The Hufnagel-Valley

model (Mohr et al. 2010) is often used to describe the C2
n profile, given by the following

C2
n(h) = A exp

(
− h

HA

)
+B exp

(
− h

HB

)
+ h10C exp

(
− h

HC

)
(1.17)
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where h is the height above the ground. A represents the strength of the ground layer of the

atmosphere and HA is the height of its 1/e decay. B and HB are similarly defined for the

turbulence in the troposphere, while C and HC are related to the turbulence peak located

at the tropopause. Once a C2
n profile has been measured or estimated, then we can finally

determine how the coherence length is calculated by using

r0(λ) =

[
0.423 k2(cos ζ)−1

∫ ∞
0

C2
n(h)dh

]−3/5

(1.18)

where k = 2π/λ and ζ is the viewing angle with respect to zenith. Therefore, the coherence

length has a r0 ∝ λ6/5 dependence on wavelength.

Besides the Fried parameter r0, another important parameter for obtaining valuable

interferometric data is the coherence time, τ0. Using the coherence time essentially assumes

a frozen atmosphere (known as Taylor’s hypothesis; Taylor 1938). This frozen atmospheric

model assumes that the atmospheric density perturbations are constant over a given time

that it would take for the pocket of air to travel along a given aperture with the local wind.

The coherence time along with the Greenwood time constant can be calculated by using the

following

τ0(λ) = 0.314 r0/V (1.19)

where V is the mean wind speed given by

V =

[∫
C2
n(h) |V (h)|5/3dh∫

C2
n(h)dh

]3/5

(1.20)

where V (h) is the wind velocity at a specific height in the atmosphere. Both the coherence

length and coherence time are crucial since they limit the size of the apertures and integration

time for an interferometer, respectively (Monnier 2003).

However, you can negate the atmospheric effects by observing a quantity called the

triple product or the bispectrum. By combining the complex visibilities from two different
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telescopes, one can express the observed visibility as

Ṽ obs
12 = |G1||G2|Ṽ true

12 exp
[
i(Φobs

12 )
]

(1.21)

where 1 and 2 is telescope one and two (respectively), G is the complex gain and is used

as a scale factor based on telescope degradation effects (e.g., mirror reflectivity, detector

sensitivity, local scintillation) for any given telescope, Ṽ true is the true visibility from the

object, Φ is the phase that holds all of the information about the phase shifts from the

telescope pair, the beam, the atmosphere (e.g., changing optical path lengths based from a

thermal expansion or contraction, atmospheric turbulence conditions above the telescope,

or the beam path), and the object itself (Monnier et al. 2007). The phase can be further

expanded into

Φobs
12 = Φtrue

12 + ε1 − ε2 (1.22)

where Φtrue
12 is the intrinsic phase from the astronomical source measured by two telescopes,

and the ε1 − ε2 are the phase shift errors that come from telescope, beam, or atmosphere

(Monnier 2003; Labeyrie et al. 2006; Monnier et al. 2007; Buscher & Longair 2015).

One can negate atmospheric, beam, and telescope effects by introducing a concept first

bought to interferometry in the radio by Jennison (1958) called closure phase. This was done

to compensate for inadequate phase stability for early VLBI radio work. The idea to apply

the use of closure phases to shorter wavelengths was first thought up by Rogstad (1968) but

it took a few years before this could be applied in practice (Baldwin et al. 1986; Haniff et al.

1987; Readhead et al. 1988). By adding the phases between three different telescopes on a

closed triangle, one is left with just the sum of the intrinsic phases of the source (i.e., the

closure phase) shown by

Φobs
12 + Φobs

23 + Φobs
31 = Φtrue

12 + ε1 − ε2 + Φtrue
23 + ε2 − ε3 + Φtrue

31 + ε3 − ε1 (1.23)

= Φtrue
12 + Φtrue

23 + Φtrue
31 . (1.24)
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Hence, the atmospheric phase contributions have canceled out, so the measured closure phase

it equivalent to the true closure phase. However, the closure phase is only part of the quantity

that can be obtained from a closed triangle. By taking Equation 1.21 and multiplying them

by each baseline pair within the triangle, we arrive at

Ṽ obs
12 Ṽ obs

23 Ṽ obs
31 = |G1||G2|Ṽ true

12 ei(Φ
obs
12 )|G2||G3|Ṽ true

23 ei(Φ
obs
23 )|G3||G1|Ṽ true

31 ei(Φ
obs
31 ) (1.25)

= |G1|2|G2|2|G3|2Ṽ true
12 Ṽ true

23 Ṽ true
31 exp

[
i(Φobs

12 + Φobs
23 + Φobs

31 )
]

(1.26)

and using Equation 1.24, we can define the so-called triple product or bispectrum (Monnier

et al. 2007) as

B̃123 = Ṽ obs
12 Ṽ obs

23 Ṽ obs
31 (1.27)

= |G1|2|G2|2|G3|2Ṽ true
12 Ṽ true

23 Ṽ true
31 exp

[
i(Φtrue

12 + Φtrue
23 + Φtrue

31 )
]
. (1.28)

Another quantity called the closure amplitude can be used to correct for the gain from

each telescope; however other calibrations in optical interferometry are usually employed as

closure amplitudes require at least four telescopes for accurate measurements (e.g., see Chael

et al. 2018).

The bispectrum provides two important quantities for imaging: bispectrum phase and

bispectrum amplitude, or as it is more commonly known as the (previously mentioned)

closure phase and triple amplitude. To extract the closure phase or the triple amplitude

from the bispectrum, one can simply take the phase and modulus of the bispectrum to get

the respective quantities. While phase information is recovered using the bispectrum, the

total coherence function (Equation 1.8) cannot be fully recovered since interferometers only

sample part of the (u, v) plane. Unless a large aperture is constructed to fill the area made by

a baseline pair of telescopes, the phase information will only be partially recovered depending

on the number of telescopes, N . The number of independent closure phases is also dependent
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on N and can be given by (N−1)(N−2)
2

, with the fraction of the phase information recovered

being N−2
2

(Monnier et al. 2007).

The closure phases calculated from the bispectrum provide information about the bright-

ness distribution of the source. For an object that has symmetric intensity, the corresponding

closure phases would be either 0 or ±180 degrees. Therefore, any deviation from 0 or ±180

degrees is an indication that the brightness distribution from the source is not completely

uniform. Even though the visibility is measured, the squared visibility |V |2, which is the

square modulus of the visibility, is usually used for analysis. For a star, the first lobe of

the squared visibility gives information about the angular size of the star, the second lobe

gives information about the limb-darkening (i.e., the intensity distribution from the center

to the limb of the star), while the third and subsequent lobes provide information about

smaller surface features. The combination of all three (squared visibilities, closure phases,

triple amplitudes) is crucial for accurate interferometric imaging.

1.2 Interferometric Modeling and Imaging

In an ideal situation, all the spatial frequencies would be recovered in order to obtain an

image since it would simply take an inverse Fourier transform to reconstruct the true image.

However, this is not the case for interferometric observations since an interferometer only

samples part of the (u, v) plane (Fourier plane). There are two major reasons why this

cannot be done: the number of telescopes used during an observation limits the number of

Fourier frequencies that can be obtained, and the data are corrupted by numerous factors

(as described in Section 1.1.4). For adequate imaging, one would also need to sample low

and high spatial frequencies as low frequencies detail the large scale structures of an image

(e.g., the size of a star) while the high frequencies detail the finer details of an image (e.g.,

limb-darkening, starspots, oblateness). While imaging is a difficult problem as it is ill-posed,

interferometric modeling of the source may be a slightly less daunting task.
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1.2.1 Interferometric Modeling

In order to solve for a model of the source, we can use Bayesian statistics and follow the

maximum a posteriori paradigm. There are various global and local minimization algorithms

that are employed to solve for the best model that fits the data. The simplest method in

determining the best fit model is by applying a grid search. While a grid search allows

for a global search, this may require a large amount of computation time depending on the

number of parameters that need solving. There are various modeling codes that are available

for modeling (Baron 2020), however we will discuss one particular modeling code that is used

in this work, SIMTOI (Kloppenborg & Baron 2012a,b; Kloppenborg et al. 2015).

The SImulation and Modeling Tool for Optical Interferometry (SIMTOI) is an inter-

ferometric modeling code that uses a GPU to render stars and their environments in a

three-dimensional framework. In SIMTOI, the stellar intensity maps are represented as two-

dimensional textures applied on top of orbiting/rotating three-dimensional stars. Once the

scene is rendered, the GPU also powers the fast computation of interferometric observables.

SIMTOI offers a large choice of global and local optimizers to solve maximum a posteriori

or model selection problems. We ultimately use the MultiNest optimizer (Feroz & Hobson

2008; Feroz et al. 2009, 2019) to acquire the best models.

As a first approach to finding a solution from a global standpoint, the MultiNest optimizer

can be seen one of the best methods to find a solution. While a wide variety of codes use

Markov chain Monte Carlo (MCMC), it is limited by the fact that it does not sample the tail

ends of distributions and does not provide an easy way to determine of the convergence of the

algorithm. MultiNest has been shown to outperform other global optimization techniques,

such as MCMC, by applying the Nested Sampling method (Skilling 2004, 2006; Sivia &

Skilling 2006). In order to explain the nested sampling within MultiNest, we must first start

with Bayes’ theorem as written in Feroz et al. (2019):

Pr (Θ|D,M) =
Pr (D|Θ,M) Pr (Θ|M)

Pr (D|M)
(1.29)
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where Θ are a set of parameters, M is the model, D is the data, Pr (Θ|D,M) ≡ P (Θ|D)

is the posterior probability density of the model parameters, Pr (D|Θ,M) ≡ L(Θ) is the

likelihood of the data, Pr (Θ|M) ≡ π(Θ) is the prior, and Pr (D|M) ≡ Z is the Bayesian

evidence and the normalizing factor of the posterior. The Bayesian evidence can also be

defined as

Z =

∫
ΩΘ

L(Θ)π(Θ)dΘ. (1.30)

Following the equations and explanation of the algorithm in Feroz et al. (2019), we can

then turn the multidimensional integral from Equation 1.30, to a one dimensional integral.

This one dimensional integral is represented as the survival function or otherwise known as

the prior volume X(λ), for L(Θ), is

X(λ) =

∫
{Ω:L(Θ)>λ}

π(Θ)dΘ (1.31)

where the integral spans over the region in parameter space within a given iso-likelihood

contour, L(Θ) = λ. You can then rearrange the Bayesian evidence as

Z =

∫ ∞
0

X(λ)dλ (1.32)

or if the likelihood is a continuous function, it can be further rearranged as (Chopin & Robert

2010)

Z =

∫ 1

0

L(X)dX (1.33)

≈ Ẑ =
N∑
i=1

Liwi (1.34)

where L(X) is the inverse of X(λ), wi is the weight (for known L(X), the weight can be

estimated as wi = 1
2
(Xi +Xi+1) through the trapezoidal rule), and a given number of points

N . The nested sampling algorithm is initialized by taking N live points from the prior and
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the initial prior volume. At every successive iteration the point where the likelihood is the

lowest Li is then removed from the set and replaced with another point from the prior with

the condition that the new likelihood point is higher than Li. The nested sampling algorithm

is completed when the estimated evidence contribution ∆Zi = LmaxXi (where Lmax is the

maximum likelihood among the current set of live points) is less than a user-defined tolerance

level (Feroz et al. 2019). One major problem with some nested sampling algorithms is that

there is an exponential reduction in the sampling for increasing dimensionality.

The MultiNest algorithm built by Feroz & Hobson (2008) solves the higher dimensionality

sampling issue by taking unbiased samples from a likelihood-constrained prior through an

ellipsoidal rejection scheme. The live points are split within ellipsoids that could possibly be

overlapping at certain points. At a given iteration, an ellipsoid l is chosen given a probability

pl = Vl/Vtot where Vl is the volume of a particular ellipsoid and Vtot =
∑L

l=1 Vl is the total

volume of all the ellipsoids. A point is then selected from the ellipsoid, checked against the

nested sampling constraint L > Li and if it’s accepted, then the point is given a probability

1/q where q is the number of ellipsoids that the particular point belongs to. If the point

is otherwise rejected, then the point is discarded from the ellipsoid (yet still saved for later

calculations).

In order to make MultiNest fully efficient, Feroz et al. (2019) has also implemented

the importance nested sampling algorithm (Cameron & Pettitt 2014). Importance nested

sampling takes all points from MultiNest, regardless of whether it is rejected from the nested

sampling constraint or not. A pseudo-importance sampling density can be formed as

g(Θ) =
1

Ntot

Niter∑
i=1

niEi(Θ)

Vtot,i

(1.35)

where Niter are the total number of iterations from MultiNest, ni is the number of points

collected at a specific ith iteration, Ntot =
∑Niter

i=1 ni is the total number of points from the

start to the ith iteration, Vtot,i is the total volume of all the ellipsoids at the ith iteration,
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and Ei(Θ) is an indicator function that returns either 1 when Θ is within the ellipsoids or

0 if it is outside. The total volume of the ellipsoids for importance nested sampling can be

estimated by

Vtot ≈ V̂tot =
M∑M
m=1 qm

L∑
l=1

Vl (1.36)

whereM is a number of points taken from a specific ellipsoid given a probability of Vl/
∑L

l=1 Vl

and with qm being the number of ellipsoids from given selected mth point from the drawn

M points. The Bayesian evidence can finally be estimated as

Ẑ =
1

Ntot

Ntot∑
k=1

L(Θk)π(Θk)

g(Θk)
(1.37)

with the estimation of the posterior probability density as

P (Θ) =
L(Θ)π(Θ)

Ntotg(Θ)
. (1.38)

Ultimately, the estimation of the Bayesian evidence, otherwise known as the marginal like-

lihood (or the marginal loglikelihood, lnZ, as used within this manuscript) indicates how

trustworthy any one specific model is compared to other models. Within SIMTOI, once

the difference between nested sampling and importance nested sampling are within a given

tolerance, a solution to a model is formed given an interferometric data set.

1.2.2 Image Reconstruction

To determine a unique solution for imaging, we need to apply prior information to constrain

an image. We can describe an imaging problem in terms of maximum a posteriori, which

contains two penalty terms: a likelihood and a prior. The likelihood constrains the image to

data while the prior constrains the image to a known boundary (Baron 2016). The optimum
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image is obtained when the sum of the likelihood and the prior are minimized, given by

xopt = arg min
x∈Rn

{χ2(x) + µR(x)} (1.39)

where χ2(x) is the likelihood and µR(x) is the prior. The µ within the prior term is the

hyperparameter (or the weighting term) which determines how much of an influence the

prior will have against the likelihood when finding an optimum image, and the R(x) term is

the regularization. The difficulty of obtaining an adequate image arises from balancing the

likelihood against the prior. Using a low hyperparameter value results in an image riddled

with artifacts (χ2 dominate regime), while using a high hyperparameter value results in an

over-regularized image that sticks very closely to the prior (µR(x) dominate regime).

Most image reconstruction techniques consist in the application of Equation 1.39. One

of the most important priors to implement in image reconstruction is enforcing positivity.

Whether the intensity or the temperature of an image are being optimized, both need to

be positive since they are a physical feature of the source. Other regularizations, such as

maximum entropy or the l2 norm, are also used within imaging codes; however, total varia-

tion has been the most widely employed recently, and especially in interferometric imaging

(Renard et al. 2011). The total variation regularization looks at neighboring pixels within

an image and computes the spatial gradient between these neighboring pixels, therefore,

penalizing large temperature fluctuations between neighboring pixels. This technique allows

for global intensity or temperature variations (if the hyperparameter value is small enough)

while having a smoother intensity or temperature distributions on a local scale.

Optimization of Equation 1.39 has been historically done through various means such as

using stochastic methods (simulated annealing or parallel tempering), Alternating Direction

Method of Multipliers (ADMM), or gradient-based methods (see Baron 2020, and references

therein). For this work, we focus on two specific optimizers for imaging: the Nelder-Mead

Simplex method (commonly known as the amoeba or downhill simplex method; Nelder &
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Mead 1965; Box 1965; Richardson & Kuester 1973) within the NLopt package (Johnson 2007)

and the quasi-Newtonian method Variable Metric Limited Memory with Bounds (VMLMB)

within the OptimPack package (Thiebaut 2002).

The Nelder-Mead Simplex method does not require a gradient and solves for a solution

on a local scale. In order to come to a solution, the method starts by selecting n+ 1 points

on a grid depending on the dimensionality n of the problem. For example, if there are three

dimensions, four points are chosen randomly on the grid, making a pyramid. The algorithm

takes a series of steps depending on the nature of the shape of the simplex (i.e., reflection,

expansion, and contraction of the shape base on each point). Multiple contractions of the

n-dimensional will eventually lead to a solution to the problem. VMLMB is similar to

Newton’s method in that the gradient is only needed and is also used to approximate the

Hessian. The combination is used to examine the direction of the criterion gradient and the

curvature of the overall grid. A solution is found for VMLMB when the gradient becomes

close to a certain threshold.

1.3 RS Canum Venaticorum Variables

Perhaps the first written observations about magnetic spots on the Sun were noted by the

ancient Greeks around the 4th century BCE (Vaquero 2007), while around the same time in

imperial China, similar observations of the Sun were noted by the astronomer Gan De (Tem-

ple 1986). Many other civilizations also took note of these sunspots and continued recording

these observations. However, it took around two millennia until any notice of spot activity

would be detected on a star beyond our Sun. Kron (1947) obtained photometric observations

of four eclipsing binary systems and hypothesized that the photometric variability could not

be explained through ordinary means but through spots. These observations turned out to

be the first detection of magnetic spot activity on other stars.

We now know that stars ranging from pre-main sequence to giants exhibit magnetic spot

activity of their surfaces (Strassmeier 2009). Since the advent of space missions, such as
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CoRoT (Baglin et al. 2006a,b) and Kepler (Borucki et al. 2010; Koch et al. 2010), many

more stars have been observed to exhibit magnetic activity (Frasca et al. 2011; Fröhlich

et al. 2012; Roettenbacher et al. 2013, 2016a; Nielsen et al. 2019; Santos et al. 2019). These

stellar features constitute major sources of uncertainty trying to calculate accurate stellar

physical parameters (e.g., Teff and R?; Somers & Pinsonneault 2015). Starspots have other

astrophysical significance tying them to accurately determining exoplanetary parameters.

Any uncertainties found in the host star’s physical parameters are amplified to any of their

planetary parameters, as deriving exoplanetary parameters are dependent on the parent star.

Magnetic properties of spots can also affect their surrounding environment including close-in

planets, and in some cases these planets can back-react onto the host star (e.g., Shkolnik

et al. 2003; Catala et al. 2007; Kashyap et al. 2008; Lanza 2008).

RS Canum Venaticorum (RS CVn) variables, named after the prototype of its class, are

known to show large magnetic starspots (Hall 1976; Kővári et al. 2015; Roettenbacher et al.

2016b, 2017). These variables are often found in a binary system, and the pair often consists

of an evolved giant primary with the secondary being a smaller main-sequence companion

(Berdyugina 2005; Strassmeier 2009). Magnetic spots in these systems are often easier to

observe because of their larger relative size to the star, thus making RS CVn variables ideal

observing targets. Hall (1976) classified these RS CVn variables to have the following features

(as noted in Berdyugina 2005):

i. photometric variability;

ii. Ca II emission lines;

iii. subgiant component well within its Roche lobe;

iv. fast rotation (i.e., almost synchronized binaries with orbital periods of a few days) and;

v. orbital period variations.
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Hall (1976) further categorizes RS CVn variables into subgroups with similar features as the

standard RS CVn. The more important of the two groups are the short and long-period

binary systems. The short-period binary subgroup constitutes of binaries that fulfill all the

RS CVn requirements but have binary orbital periods of less than one day and are non-

contact binaries. The long-period binary subgroup has similar features to the ordinary RS

CVn variables but has binary orbital periods greater than two weeks and may be semi-

detached or completely detached.

1.3.1 Starspot Properties

Arguably, two of the most important observational features of these RS CVns spots can

be driven down to their starspot lifetimes and spot temperature differences with a star’s

photosphere. In general, starspot lifetimes can be tied down to several factors (Hussain

2002):

i. spots on tidally locked binary systems can live longer (a few months) compared to

single main-sequence stars (a few weeks);

ii. polar spots may have a different lifetimes compared to other observed starspots;

iii. starspot lifetimes may live, on average, to around a year (based on time-series pho-

tometry) and;

iv. starspot longitude reversal could eliminate a spot’s signature in a light-curve and con-

ceal its decay rate.

In the study by Hall & Henry (1994), it has been found that small starspots seemed to have

lifetimes proportional to their sizes while large starspots, like those on RS CVns, can survive

for many years and live on certain active longitudes. Strassmeier et al. (1994) observed the

RS CVn variable HR 7275 with the intention of following 20 different spots, or spot groups,

and found that individual spots can live up to 4.5 years with an average lifetime of 2.2 years

(based on starspot lifetime laws from Hall & Henry 1994).
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Amplitude light-curve variations are a direct indication of stellar photosphere tempera-

ture variations. Cool starspots on RS CVns can cause these variations by quite a noticeable

amount, with the largest variations observed on the two RS CVn variables HD 12545 and

II Pegasi reaching a ∆V = 0.63 mag (Strassmeier 1999; Tas & Evren 2000). In cases like

these, these spots are shown to cover up to 20% of the total surface of the star. These can

correspond to temperature differences between the photosphere and the cool spot of 500 K

to 1900 K (Berdyugina 2005, and references therein). In order to directly observe these spots

on the surfaces of RS CVns, three main techniques are routinely employed to image these

systems: light-curve inversion, Doppler imaging, and interferometric imaging.

1.3.2 Imaging of RS CVn Variables

Photometric monitoring of RS CVns provides straightforward evidence for stellar spots, as

shown in many other systems observed by the Kepler spacecraft (e.g., Frasca et al. 2011;

Fröhlich et al. 2012; Roettenbacher et al. 2013, 2016a). The inverse problem of imaging

the stellar surface from photometry is light-curve inversion (Wild 1989; Roettenbacher et al.

2013). The main drawback of broadband light-curve inversion is that photometry only

provides relative information about the latitude of starspots (Harmon & Crews 2000) and

relies on prior knowledge of the stellar limb-darkening. Light-curve inversion from multi-

band photometry alleviates the latitude ambiguities, resulting in more accurate solutions

(Harmon & Crews 2000).

Regardless of the few drawbacks, the large area of spot coverage from RS CVns com-

pared to our Sun has allowed light-curve inversion maps of a handful of RS CVn systems

(e.g., Roettenbacher et al. 2011, 2016a, 2017). While pure photometric studies had given

evidence of surface differential rotation (e.g., Henry et al. 1995), light-curve inversion serves

a more direct method for differential rotation detection. One of the more recent methods

for light-curve inversion applied to RS CVns is the algorithm by Harmon & Crews (2000).

In short, the algorithm is based on a similar minimization from Equation 1.39, except that
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the regularization also has a bias term. This bias term weights the regularization such that

patches on the star would favor lower temperatures or intensities. Since RS CVns are riddled

with cool spots, this updated method seems optimal for these types of stars.

Doppler imaging (Goncharskii et al. 1977; Rice et al. 1981) is another class of inverse

methods for imaging stellar surfaces from spectroscopic data. This technique uses perturba-

tions of absorption features on a star to better estimate the spot’s latitude and longitude.

However, there are still uncertainties in determining spot location for stars near edge-on

rotation. High-resolution spectra are needed in Doppler imaging to distinguish the features

due to the starspots in the absorption lines and to be able to detect their locations accurately.

High rotational velocities rotationally broaden absorption lines and are required to ensure

that the spectroscopic impact of a spot moving across the surface is shorter than the spot’s

evolution timescale. Piskunov & Wehlau (1990) determined lower bounds enabling Doppler

imaging to be from 6 km/s to 15 km/s, which corresponds to spectrograph resolving powers

of at least 20,000 to 50,000.

Various RS CVn variables have been observed through this method to obtain Doppler

images (Strassmeier 2009, and references therein) which as proven successful at displaying

spot motion. Several methods have been proposed to solving the inverse problems within

Doppler imaging, including using maximum entropy (Vogt et al. 1987) and the Occamian

approach (Berdyugina 1998). The difference in solutions between each method diminishes

when the data quality is of good quality (Berdyugina 2005).

Contrary to Doppler imaging or light-curve inversion, interferometry provides unambigu-

ous evidence that a spot is being shown without any assumptions on latitude. Interferometric

modeling allows the determination of angular parameters, such as the inclination or position

angle of a spotted star. However, interferometric observations can only be managed on a

limited number of targets (i.e., relatively bright targets) compared to photometric and spec-

troscopic targets. Furthermore, only targets of sufficient angular size can be resolved from

Earth. To date, three RS CVn variable stars have been interferometrically imaged: λ An-
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dromedae (Parks et al. 2021), ζ Andromedae (Roettenbacher et al. 2016b), and σ Geminorum

(Roettenbacher et al. 2017). It was only in 2007 that interferometric synthesis imaging be-

came possible (Monnier et al. 2007) thanks to longer baselines and the combination of light

from four (and now up to six) different telescopes.

1.3.3 The RS CVn Variable λ Andromedae

This work will focus on the RS CVn variable λ Andromedae (HD 222107; hereafter λ And).

The primary star in λ And is a bright G8III-IV long-period RS CVn variable (V = 3.82,

H = 1.40) with spots and is included in the third edition of the Catalog of Chromospher-

ically Active Binary Stars (Eker et al. 2008). The system is a single-lined spectroscopic

binary system with a rotation period of 54.07 days for the primary (Henry et al. 1995) in

asynchronous rotation with its companion. It is in a nearly circular orbit for the system with

an eccentricity of e = 0.084± 0.014 and an orbital period of 20.5212± 0.0003 days (Walker

1944). The most recent estimate of the effective temperature and mass for the primary star

of λ And is 4800 ± 100 K and 1.3+1.0
−0.6 M� (Drake et al. 2011). The companion is most

likely a low mass main sequence star or a massive brown dwarf based on its mass ratio of

q = 0.12+0.07
−0.04 (Donati et al. 1995).

As most studies focus on the primary star in the λ And system since the secondary

difficult to observe, any reference to λ And throughout the rest of this manuscript will be in

reference to the primary unless specifically referenced otherwise. λ And has been shown to

have very strong Ca II H & K emission (Gratton 1950) and it has been found that strength

of these lines was correlated with the photometric period (Baliunas & Dupree 1982). Further

spectroscopic studies have also found λ And to show Mg II h & k emission lines (Linsky

et al. 1978; Baliunas & Dupree 1979; Basri & Linsky 1979) as well as Hα emission (Elston

et al. 1982). Since it remains to be one of the brighter RS CVn variables in the sky, it has

been the subject of numerous photometric studies (e.g., Bopp & Noah 1980; Boyd et al.

1983; Henry et al. 1995) since the discovery of its variability (Calder 1938). A study by
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Bopp & Noah (1980) estimated that the large amplitude variations in photometry caused by

λ And’s spots corresponded to temperature differences between the spot and the photosphere

of ∼800 K while another study found a spot to photosphere difference of 1050 K (Poe &

Eaton 1985). Over 14.8 years, Hall et al. (1991) obtained and collected photometry from

various observatories to establish an 11.4± 0.4 year spot cycle.

While tracking spot migration and location can prove challenging, a handful of attempts

have been made at producing light-curve inversion maps or models of the surface of λ And.

Using B and V photometry, Donati et al. (1995) reconstructed light-curve inversion maps

over two to three months in two different epochs. Their light-curves showed one large spot for

each epoch using the maximum entropy method with a surface filling factor of approximately

50 − 60%. While these images may be seemingly unrealistic, they roughly represent the

activity on the surface, corresponding to a calculated spot to a photosphere temperature

difference of 800 K, consistent with previous works. One issue that arises from the production

of these light-curve inversion maps stems from the calculation of the inclination, i = 60◦+30
−15.

Later on, Frasca et al. (2008) compiled surface models based on V photometry and spectra,

which produced spots and plagues that more accurately represented the surface of λ And.

Similar to previous works, the spot to photosphere temperature difference in Frasca et al.

(2008) was also calculated to be around 880 K.

Various attempts have been made to estimate the angular diameter of λ And using direct

and indirect methods. The first angular measurements using long-baseline interferometry

of λ And were made by Nordgren et al. (1999), who calculated a limb-darkened angular

diameter of 2.66 ± 0.08 mas with a corresponding physical radius 7.4 ± 0.2 R�. Using

indirect methods such as intrinsic brightness and color can often yield a larger range of

imprecise results, and in the case of λ And can yield angular diameter results ranging from

2.7− 3.4 mas or 3.9− 7.8 R� (Pasinetti Fracassini et al. 2001, and references therein).

Since long baseline interferometry obtains accurate and precise angular diameter mea-

surements, and with the advent of aperture synthesis imaging providing accurate surface
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features, λ And became one of the newest targets for imaging. The new 2D snapshot inter-

ferometric images of λ And from Parks et al. (2021) were produced with data obtained at

the Center for High Angular Resolution Astronomy (CHARA) Array. Their study estimated

that the angular diameter for the primary of λ And is 2.759± 0.050 mas, which corresponds

to a physical radius of 7.831+0.067
−0.065 R� based on the Hipparcos distance of 26.41±0.15 pc (van

Leeuwen 2007). The modeling and imaging presented in Parks et al. (2021) more clearly

defined the location and sizes of each spot as well as the corresponding temperature ratio

between each spot and the photosphere.

1.4 Rapidly Rotating Stars

One of the often overlooked stellar parameters is usually stellar oblateness. Usually, main

sequence stars are assumed to be mostly spherical if the star does not have any unusual

properties (e.g., the star in a close binary system with Roche lobe overflow or the star is so

massive that it starts shedding its outer layers). Even our own Sun, which rotates around its

own axis on average every 28 days, has a small amount of oblateness (b/a−1) around 8×10−6

given that the solar radius is approximately 959.89′′ (Meftah et al. 2015). This oblateness,

while very minuscule, gives a pole to equator difference of 7.84 ± 0.29 mas (Meftah et al.

2015) and is therefore safe to assume a spherical shape. However, there are many other stars

for which you can no longer assume a spherical shape as the degree of oblateness for some

start reaching levels of 20%− 30% (van Belle 2012).

Rapid rotators are of high interest because these stars have equatorial speeds that can

reach up to 95% of their escape velocity. The fast rotation makes the photosphere bulge

at the equator due to the centrifugal force. As a consequence, the surface brightness and

effective temperature vary with latitude (brighter poles and darker equator), a phenomenon

known as gravity darkening. Gravity darkening was first predicted by the von Zeipel law

(von Zeipel 1924a), who first derived that the local surface flux from a star can be related

to the local surface gravity, F ∝ g. Using the Stefan-Boltzmann law, F = σT 4
eff (σ is the
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Stefan-Boltzmann constant), this relates the effective temperature of the star to the local

surface gravity Teff ∝ g0.25. While this approximation can be applied to stars with radiative

envelopes, it does not hold for all types of stars. With stars with convective envelopes, Lucy

(1967) found that there is a weaker dependency between the local surface temperature and

local surface gravity, Teff ∝ g0.08. Therefore, a general relationship for rapid rotators can be

made as

Teff ∝ gβ (1.40)

where β is a variable between 0.08 and 0.25.

Studying these rapid rotators is not limited to understanding the nature of gravity dark-

ening but has more physical implications in stellar astronomy. Rotation in stars promote

chemical mixing, and rapid rotation in high-mass stars, compared to their non-rapidly ro-

tating counterparts, show higher chemical mixing (Pinsonneault 1997). Rotation in higher

mass stars also creates different evolutionary tracks on the HR diagram depending on their

rotation rate (see Figure 1.3; Meynet & Maeder 2000). Not only is rapid rotation important

for understanding massive stars, since they are the progenitors of Wolf–Rayet stars, super-

novae, and gamma ray bursts, but it also influences galactic astronomy (Maeder & Meynet

2010) because they contribute to the galactic metallicity.

Most theoretical codes are one-dimensional and either do not take into account rapid

rotation or have a simplistic estimate of rotation and difficulties reproducing results from

observational data (Rieutord et al. 2016, and references therein). However, a two-dimensional

code called Evolution STEllaire en Rotation (ESTER; Rieutord 2006) has shown realistic

models of rapidly rotating stars with differential rotation and meridional circulation (Es-

pinosa Lara & Rieutord 2013). As described in Espinosa Lara & Rieutord (2013), ESTER

uses Poisson’s equation, the equation of entropy, the momentum equation in an inertial

frame, and the equation of mass conservation in order to make up the state of a radiative

star. The equation of state, opacity, and nuclear generation are defined in the code as well

to evolve any rapid rotators. ESTER has also been able to produce models with physical
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Figure 1.3 We show the evolutionary tracks of different mass stars ranging from 9 M� to 120
M� for a given metallicity of Z = 0.020. The non-rotating stars are denoted by the dotted
black lines and the rapid rotating stars (∼300 km/s) by the solid red lines. This figure is
adopted from Meynet & Maeder (2000) reproduced with permission © ESO.

parameters consistent with some interferometric observations (see Che et al. 2011; Monnier

et al. 2012; Espinosa Lara & Rieutord 2013).

1.4.1 Historical Spectroscopic and Interferometric Observations

The first mention of tying stellar rotation to spectroscopic observations of stars began with

Abney (1877) who suggested that stellar rotation could be observed from spectral line broad-

ening. While that was the idea was quickly cast off by Vogel (1877) because they noted that

the broadened hydrogen lines mentioned in Abney (1877) were also accompanied by nar-

row lines, the first observations tying stellar rotation to spectroscopic observations started

with Schlesinger (1909, 1911). Schlesinger’s observations focused on two eclipsing binaries,

λ Tauri and δ Librae, and used what was later known as the Rossiter–McLaughlin effect

(Rossiter 1924; McLaughlin 1924) to measure the variations in the apparent radial velocity

from the rapidly rotating primary star. It was not until the work by Shajn & Struve (1929)
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that predicted how the spectral lines were shaped from rotation Doppler broadening in stars,

even though the effect was mostly accentuated for binary systems. Elvey (1930) soon used

these spectral line shapes to obtain the first list of rotational velocities of stars, which were

then followed by many other catalogs and studies that investigated stars between the O and

F spectral types (e.g., Struve & Elvey 1931; Westgate 1933a,b, 1934; Slettebak 1949).

While the spectroscopic observations of rapid rotators had quick progression after the first

Doppler broadening measurements, it took about 80 years after the first angular measure-

ments of Betelgeuse by Michelson and Pease for there to be interferometric measurements

of stellar oblateness. These first observations of oblateness were taken with the Palomar

Testbed Interferometer by observing Altair (van Belle et al. 2001) using two different base-

lines (even though the diameter of Altair was measured by the Intensity Interferometer at

Narrabri by Hanbury Brown et al. 1974, and could only solve for a uniform disk model).

Many interferometric observations of rapid rotators soon followed within the next decade.

Domiciano de Souza et al. (2003) observed another rapid rotator, Achernar, at the Very

Large Telescope Interferometer (VLTI) to find a large amount of oblateness. Ohishi et al.

(2004) revisited Altair using the Navy Prototype Optical Interferometer (later renamed to

the Navy Precision Optical Interferometer, NPOI) and not only confirmed its oblateness, but

the closure phases showed an indication of a bright pole, consistent with gravity darkening.

Eventually, Monnier et al. (2007) observed Altair with the CHARA Array to produce the

first image of a rapid rotator. The rapid progress of imaging soon followed as four other

rapid rotators were imaged with CHARA within the subsequent five years (Zhao et al. 2009;

Che et al. 2011). For this work, we will focus on one rapidly rotating star Alderamin.

1.4.2 Alderamin

Alderamin (α Cephei, HD 203280) is a bright A8V (Gray et al. 2003) rapidly rotating main

sequence star (V = 2.46, H = 2.13) which was first spectroscopically identified as such by

Slettebak (1955). Spectroscopic measurements of this star show that the rotation velocity
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values have a large extent, ranging from v sin i = 180−265 km s−1 (Abt & Morrell 1995; Abt

& Moyd 1973). Alderamin was first interferometrically observed as the second commissioning

target for the CHARA Array by van Belle et al. (2006) and later revisited by Zhao et al.

(2009) in order to fully characterized.

The work by van Belle et al. (2006) used the Ks band CLASSIC beam combiner with

two different baselines to ultimately fit a Roche model for Alderamin. The resulting angular

diameter measurements confirmed Alderamin’s oblateness given a polar angular radius of

0.6753+0.0119
−0.0135 mas and equatorial angular radius of 0.8767+0.0293

−0.0183 mas with a corresponding

fractional angular velocity of ωc = 0.9585. As β was left as a free parameter (β = 0.084+0.026
−0.049),

the temperature distribution across the surface ranged from 8440 K at its pole to 7490 K

at its equator, indicating that Alderamin has a more convective envelope as opposed to a

radiative one. Given these parameters, van Belle et al. (2006) saw that Alderamin almost

made two full rotations per day and calculated it to be 2.0± 0.15 M�.

The follow-up observations by Zhao et al. (2009) saw some disparity between their results

and those by van Belle et al. (2006). Zhao et al. (2009) used the Michigan Infrared Beam

Combiner (MIRC) combining four telescopes together which provided six non-redundant

baselines with the addition of closure phases. The latter’s work seemed to be more reli-

able as there was larger (u, v) coverage and the closure phases showed direct indication of

the asymmetric brightness distribution, and so the work provided a completely different

temperature distribution across Alderamin’s surface. The combination of a larger (u, v) cov-

erage allowed for surface imaging of the star as well as the fitting of two difference Roche

models, a standard von Ziepel model and a β-free model. The adopted β-free model of

β = 0.216 ± 0.021 completely changed the nature of understanding of Alderamin as this

showed that the temperature difference between the pole and equator was ∼ 2000 K, a much

larger temperature distribution than that from van Belle et al. (2006).
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1.5 The Future of Interferometry

Long baseline optical interferometry has allowed for observations in the milliarcsecond regime.

Current long-baseline interferometers propagate light from their telescopes to a lab via vac-

uum tubes. There are currently three active optical interferometers in the world. The

CHARA Array uses vacuum pipes, and adaptive optics (AO) for compensating aberrations

in the lab in the near-infrared. NPOI has vacuum pipes to transfer light in the visible and

VLTI transfers light through pipes in the infrared. As this work focuses on data obtained

with the CHARA Array, we will describe the faculty in more detail compared to NPOI or

VLTI.

The CHARA Array is an interferometric array with six 1 meter telescopes, in a Y-

shaped configuration, and has the world’s longest operational baseline (at 330 meters) in

optical interferometry (McAlister et al. 2005; ten Brummelaar et al. 2005). CHARA uses

these large baselines to observe in both the visible to near-infrared, thus providing broad

wavelength coverage. The facility has provided angular size measurements of many stellar

disks (e.g., Boyajian et al. 2012) and has imaged a wide variety of objects including: rapid

rotators (e.g., Monnier et al. 2007; Zhao et al. 2009; Che et al. 2011), binary systems (Zhao

et al. 2008), triple systems (Baron et al. 2012), nova eruptions (Schaefer et al. 2014), and

RS CVn variables (Roettenbacher et al. 2016b).

NPOI and VLTI can configure their telescopes to extend the (u, v) coverage; however,

there are limitations. NPOI is able to combine light from six different siderostats at a given

time, and each of those siderostats can be placed at any of the several different stations

(Armstrong et al. 1998). VLTI has two different types of telescopes available for beam

combining but only allows four telescopes to be combined at a time (Schöller 2007). The

large 8.2 meter Unit Telescopes at VLTI are at fixed locations, while their 1.8 meter Auxiliary

Telescopes are smaller and can be positioned at up to 30 different stations. CHARA is the

only facility out of the active facilities that does not have the ability to move telescopes to
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different stations, but it is the only facility that can combine light from six telescopes at

once.

CHARA, NPOI, and VLTI all have their telescopes at fixed positions during a night,

although that the latter two can re-position their telescopes during the day. Having movable

telescopes throughout the night would increase (u, v) coverage for better imaging. However,

using vacuum pipes is not a practical solution for active movable telescopes due to the rigidity

of the vacuum pipes. One viable solution would be to use fiber optics to propagate light from

the telescopes to the lab. Fiber optics, though, have some disadvantages in that they are

limited to monochromatic light in bandpass, and are open to wear from weathering effects

and temperature changes. Open-air beam propagation is an attractive alternative solution

for propagating light if facilities have moving telescopes, and is what we endeavor to explore

here. One immediate application for open-air beam propagation is CHARA’s newest project

with the installation of a seventh, potentially mobile, telescope.

Horizontal beam propagation is a fascinating subject for astronomy since we are inter-

ested in understanding the ground layer turbulence; it also has military applications. Recent

lab work by Corley has done some work by simulating horizontal propagation through deep

turbulence by studying phase modulations using spatial light modulators, and amplitude

variations through extended beam paths (Corley et al. 2011). Bos has done some theoreti-

cal work to simulate horizontal beam propagation only using phase but with anisoplanatic

patches within the images (Bos & Roggemann 2012). Hernandez has done some work in the

lab by testing phase perturbations through the use of fans to create “atmospheric turbu-

lence” instead of using spatial light modulators like some of the previous works mentioned

here (Hernandez et al. 2020). There have also been attempts at estimating beam propaga-

tion tests in the field in a study made by Vorontsov (Vorontsov et al. 2010). Vorontsov’s

work showed that there are different intensity scintillation patterns based on the specific

wavelength that is propagated horizontally.
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1.6 Summary of Projects

In this manuscript, we will cover a range of topics that are centered around optical interfer-

ometry. Imaging stellar surfaces provides a description of their physical characteristics and

out of the three main imaging techniques, interferometric imaging provides an unambiguous

interpretation of surface temperature variations. There is one other 3D code able to interfer-

ometrically image spheroids but is limited by its use of stochastic methods to solve for the

imaging and unavailable for public use. Our main goal for our work is to demonstrate the

capabilities of our new imaging code and its application for interferometric imaging of two

different astronomical objects as there are no other open-source 3D imaging codes available.

Our secondary goal is directly tied to interferometric imaging as we build a novel optical

setup that will set the basis for improved imaging quality of future interferometric targets.

This work will lay the groundwork for complete dynamical imaging and make it available

for large-scale use.

In Chapter 2, we will describe our 3D imaging algorithm ROTIR and how we develop

it to image stellar surfaces. In Chapter 3, we use the RS CVn variable λ Andromedae as a

test case for ROTIR. We will use the archival data used using the MIRC instrument at the

CHARA Array and compare our imaging algorithm to previous imaging codes. In Chapter

4, we will describe how we obtained interferometric data of the rapid rotator Alderamin

using the upgraded Michigan InfraRed Combiner, Exeter (MIRC-X) instrument. We will

also describe how we apply ROTIR to obtain a new image of Alderamin, and compare that

to the 2D theoretical radiation transfer model, ESTER. In Chapter 5, we describe a novel

free-space beam propagation project and how that will lay the groundwork for future optical

interferometric facilities. Finally, we conclude with a review of our results and describe any

future work in Chapter 6.

34



Chapter 2
3D INTERFEROMETRIC MODELING AND IMAGING WITH ROTIR

Our code ROTational Image Reconstruction (ROTIR) is a three-dimensional open-source

Julia code (Baron & Martinez 2018; Martinez et al. 2021; Baron & Martinez in prep) which

models the stellar surface temperatures of single stars or binary systems as two-dimensional

arrays on top of a stellar geometry. The stellar geometry itself is defined either by analytic

formulas (ellipsoids, fast rotators) or by solving Roche equations. In imaging and model-

fitting problems, ROTIR makes use of the optimization packages OptimPack (Thiebaut

2002) and NLopt (Johnson 2007) to maximize the posterior probability of the model. Since

our aim is to develop and provide a robust imaging code, we describe which models our code

is dependent on, how we convert our objects’ visibilities to compare them to interferometric

observables, and which algorithms we use to make surface maps.

2.1 Geometrical Setup

Our code is dependent on the package, OITOOLS (Baron et al. 2019), which is able to read,

plot, and model interferometric data. We use OITOOLS as a way to read in our data, split

up or combine our data temporally, and plot any squared visibilities or closure phase data

featured in this work.

Once the interferometric data are read, we define the stellar parameters and orientation

of our star. Our code requires several parameters: the angular size at the pole in milliarc-

seconds, the surface temperature, the fractional critical angular velocity if the star is rapidly

rotating, the limb-darkening law and its corresponding coefficient(s), the exponent needed if

there is any gravity darkening (von Zeipel 1924a), the difference in angular velocity between

the equator and the pole, the inclination, position angle, and rotation period of the star.

Our code allows the user to choose between three different limb-darkening laws: a quadratic

law, logarithmic law, or Hestroffer law (commonly known as the power law; Hestroffer 1997).
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Our geometrical setup starts with selecting a tessellation scheme, or groups tiles of a 3D

grid with no overlaps or gaps between each tile. Two schemes have been implemented so

far: the HEALPix tessellation (Górski et al. 2005) and the latitude/longitudinal scheme.

HEALPix presents the advantage of equal area tessels, provided the star does not depart too

much from a spherical shape (approximately 1%). The latitude/longitudinal scheme allows

for simulating differential rotation but requires more tessels to represent the surface. As

part of this work, we tested both tessellation schemes, which result in qualitatively identical

maps. Most results presented in this manuscript were obtained with the latitude/longitude

scheme. The number of pixels per angular diameter was chosen based on the estimated

angular diameter size divided by the imaging resolution limit. Therefore, the minimum total

number of pixels required across the surface of a star would simply be the number of latitude

pixels times the number of longitude pixels. Here, each latitude band would have the same

number of pixels, and higher latitude surface elements are smaller in area than those near

the equator.

For the latitude/longitude scheme, the number of latitude pixels is based on the number

of pixels per angular diameter since the latitude range spans from −90◦ to 90◦ and the

number of longitude pixels is twice the number of pixels per angular diameter since the

longitude ranges from 0◦ to 360◦. We number the vertices of the polygon by 1, 2, 3, 4 in a

counterclockwise direction when viewed along the direction of the normal. A fifth element

is also included for each pixel and defined to be at the center of each pixel.

Once the user has chosen a tessellation scheme and calculated the number of pixels

needed, the user then has the choice of choosing between three different geometries: a scaled

unit-sphere, an oblate spheroid, or a Roche object. Technically, the model of the star is a

polyhedron since the surface is made up of many different pixels and not one solid surface.

In order to describe the overall shape of the star, we choose to name them as 3D objects

instead of polyhedrons. A scaled unit-sphere is based on the radius that is input by the user.

We first develop the coordinates on a spherical grid and then convert them to Cartesian
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coordinates by using the following

x = Rp sin(θ) cos(φ)

y = Rp sin(θ) sin(φ)

z = Rp cos(θ)

(2.1)

where Rp is the radius of the star at the pole, θ is the colatitude ranging from 0◦ to 180◦, and

φ is the longitude spanning the range of 0◦ to 360◦. The colatitude here is later converted to

the astronomical convention of a latitude later in the code and will range from −90◦ to 90◦.

We also slightly modify Equation 2.1 to make an ellipsoid with the user’s choice of length

for each Cartesian direction with the following

x = a sin(θ) cos(φ)

y = b sin(θ) sin(φ)

z = c cos(θ)

(2.2)

where a, b, and c are the axial lengths in the respective x, y, z directions. Examples of

a spherical model in HEALPix and latitude/longitude tessellation schemes as well as an

ellipsoid are shown in Figure 2.1.

2.1.1 Making Oblate Spheroids

From Equation 2.2, one can approximate the geometry of an oblate spheroid. However, it

is much easier to depend on a Roche model (Roche 1837) in order to describe the nature of

rapidly rotating stars. For our models describing rapid rotators that will be used to set up

for imaging, we use the following expression to define the stellar radius (Collins 1963; Collins

& Harrington 1966): (Collins 1963; Collins & Harrington 1966):

R(ωc, θ) =
3Rp

ωc sin (θ)
cos

[
π + cos−1(ωc sin θ)

3

]
(2.3)
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Figure 2.1 Left: An example of the HEALpix tessellation for a scaled unit-sphere with a
radius of 1.5 mas. Middle: An example of the latitude/longitude tessellation for a scaled
unit-sphere with a radius of 1.5 mas. Right: An example of the latitude/longitude tessellation
for a spheroid with axial lengths of a = 1.5, b = 2, and c = 2.5.

where ωc is the fraction of the critical angular velocity and θ is the same colatitude from

Equation 2.1. The fraction of the critical angular velocity is defined as

ωc ≡
Ω

Ωcrit

(2.4)

where Ω is the rotational velocity of the star and Ωcrit is the critical angular velocity. The

critical angular velocity here is a point where the centrifugal acceleration is equivalent to the

gravitational acceleration and can be derived as

Ωcrit =

√
8

27

GM?

R3
p

(2.5)

where G is Newton’s gravitational constant and M? is the mass of the star. For rapid

rotators, the point at which the oblateness of the star reaches its greatest point is when the

equatorial radius (Re) is Re,crit = 3/2Rp.

While interferometric observations usually use Equation 2.4 as the reference for angular

velocities, the theoretical model ESTER uses a different definition within their work. The

fraction of Keplerian angular velocity as used in ESTER and ESTER related works (Rieutord
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2006; Espinosa Lara & Rieutord 2011, 2013; Rieutord et al. 2016) is defined as the following

ωk = Ω

√
R3

e

GM?

=
Ω

Ωk

(2.6)

where Ωk is the Keplerian angular velocity at the equator. A relation between the fraction

of the critical angular velocity and the Keplerian angular velocity can be written as

ωk
ωc

=

√
8

27

(
Re

Rp

)3

. (2.7)

ROTIR uses the fraction of the critical angular velocity and converts between the two in-

ternally whenever dealing with models from ESTER. Examples of the Roche geometry for

rapid rotators is shown in Figure 2.2.

Figure 2.2 Left: An example of a rapid rotator with a polar radius of 1.5 mas and ωc = 0.8.
Right: An example of a rapid rotator with a polar radius of 1.5 mas and ωc = 0.95.

2.1.2 Roche Binaries

There have been a handful of systems that have been imaged by CHARA (e.g., Zhao et al.

2008; Baron et al. 2012) or other interferometers that are either in binary or triple systems.

Therefore, we are motivated to include the geometry of binaries with in ROTIR for future

3D binary imaging and incorporate the Roche lobe calculator by Leahy & Leahy (2015).

Following their work, we start with a dimensionless form of the Roche potential (i.e., potential
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energy per unit mass) obtained by dividing the potential energy by GM1/a where M1 is the

mass of primary star within the binary and a here is the binary separation. The equation

can then be shown as (Kopal 1959; Pathania & Medupe 2012)

Υ(r̆, θ, φ) =
1

r̆
+ q

(
1√

1− 2r̆ sin θ cosφ+ r̆2
− r̆ sin θ cosφ

)
+
q + 1

2
p2r̆2 sin2 θ (2.8)

where r̆ is the physical (or angular) radius measurement normalized by the binary sepa-

ration, q = M2/M1 here is the mass ratio between the secondary and primary star, and

p = Ωstar/Ωbinary is used for a system that is in asynchronous rotation (Limber 1963). For

elliptical orbits, (Sepinsky et al. 2007) has adopted a further correction where one can replace

p2 by the following

A(p, e, ν) =
p2(1 + e)4

(1 + e cos ν)3
(2.9)

where e is the eccentricity and ν is the true anomaly for the binary system. This alters

Equation 2.8 so it now becomes

Υ(r̆, θ, φ) =
1

r̆
+ q

(
1√

1− 2r̆ sin θ cosφ+ r̆2
− r̆ sin θ cosφ

)
+
p2(q + 1)(1 + e)4

2(1 + e cos ν)3
r̆2 sin2 θ.

(2.10)

While Equation 2.10 lists all of the potential energy at every given point, we must further

define potentials at two more points in order to calculate the physical (or angular) radius

of the system. The first potential required is the potential energy at the L1 Lagrangian

point. Out of the five total Lagrangian points, the L1 point lies in between the two stars

in the binary system. A good approximation of the radius of the star at the L1 point is

typically estimated using the Eggleton formula (Eggleton 1983). However, we use the slight

modification in the Leahy & Leahy (2015) Fortran code for our starting approximation in

the form of

RL1 =
0.49

0.6 + q2/3 ln(1 + q−1/3)
. (2.11)
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After using the modified Eggleton formula, we use Newton’s method to get the true value

for radius of the star at the L1 point. Once we arrive at a solution for Equation 2.11, we

use Equation 2.8 to find the potential energy at the L1 point. We can finally calculate the

potential energy at the surface given a fill-out factor F (a value of how much of the Roche

lobe in a binary is filled) in the following

ΥF =
ΥL1 + q2

2(1+q)

F
− q2

2(1 + q)
. (2.12)

Using the mass ratio of the system, fill-out factor, asynchronous rotation ratio, Equations

2.11 and 2.12, we use Brent’s method (Brent 1973) just as it was used in Leahy & Leahy

(2015) to solve for the physical (or angular) radius at every point within the star. Since

Leahy & Leahy (2015) notes that there are certain variables that are restricted to make their

calculator accurate, we also apply the same restrictions and limit the mass ratio between

0.01 < q < 100, the asynchronous rotation ratio between 0.01 < p < 2, and fill-out factor

between 0.1 < F < 1. Examples of the binary star setup with different fill-out factors are

shown in Figure 2.3.

Figure 2.3 Left: An example of a binary system with a fill-out factor of F = 0.75. Right:
An example of a binary system with a fill-out factor of F = 0.99.
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2.2 Differential Rotation Option

The user can select whether or not to turn on the option to simulate differential rotation.

While the simulation can be done using both tessellation schemes, it is much easier using the

latitude/longitude scheme since edges of these neighboring pixels are directly north, south,

east, and west of each other (with the exception of the poles). The equation for differential

rotation (Henry et al. 1995) used in our code is in the form

Ω(θ) = Ωe −∆Ω sin2 θ (2.13)

where θ is the colatitude, Ω(θ) is the rotation rate at a specific latitude, Ωe is the rotation

rate at the equator, and ∆Ω is the difference in angular velocity between the equator and

the pole. This difference between angular velocity in the equator and the pole is related to

the differential rotation coefficient, k, or the surface shear parameter, α, commonly found

in the literature (e.g., Henry et al. 1995; Davenport et al. 2015; Kővári et al. 2015) and is

defined through the following equation

k =
Ωe − Ωp

Ωe

, (2.14)

or in terms of the polar and equatorial rotational periods as

k =
Pp − Pe

Pp

(2.15)

where Ωp is the rotation rate at the pole, Pp is the rotation period at the pole, and Pe is the

rotation period at the equator.
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2.3 Going from a 3D Geometry to a Visibility

Once the user selects the desired geometry of the source, we then move onto converting the

three-dimensional object to interferometric visibilities (once a three-dimensional rotational

matrix has been applied based on the position angle, inclination, and rotation period of the

object). Since the pixels are mapped on a (x, y, z) plane, they are ordered on the surface of

the star counterclockwise when viewed along normal of the positive z direction. The surface

area An of n pixels are then calculated in order to find the flux coming from the star with

the following

An =
1

2

m∑
j=1

(vj ∧ vj+1) · ẑ (2.16)

where v is the vector of (x, y) projected positions of the nth pixel in a 2-dimensional (x, y)

plane at the jth corner, and m number of corners in the polygon of choice, · is the scalar

product, and ∧ the vector cross product operator. The m+ 1 corner here points back to the

first corner of the pixel.

Once the surface area of the pixels are calculated with the desired limb-darkening law,

the Fourier transform S is done on every pixel for a 3-dimensional object (Lee & Mittra

1983; Chu & Huang 1989; McInturff & Simon 1991) in order to compare the frequencies of

our data on the (u, v) plane by using the following equation

S(k) =
m∑
j=1

ẑ · [(vj+1 − vj) ∧ k]
sinc[k · (vj+1 + vj)]

i2π|k|2
exp[−iπk · (vj+1 + vj)] (2.17)

where k is a vector containing each u and v frequency on the (u, v) Fourier plane. We use

the flux to visibility matrix S to compute the model visibilities using:

V =
S(L ◦T)

A>(L ◦T)
(2.18)
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where V is the model complex visibility vector, T is the temperature map vector, L is

the limb-darkening map, ◦ is the Hadamard (element by element) vector product, and the

division is the Hadamard division.

2.4 Temperature Priors and Image Optimization

ROTIR uses a combination of two different image optimization techniques in order to find

the stellar parameters, the best temperature maps, and images. While it is possible to have

a uniform temperature for a spheroid as a prior, an optimizer may converge faster if a model

temperature map was used as a prior. In order to make surface temperature maps for rapidly

rotating stars and binary systems, we rely on two models for the prior: the von Zeipel law

(see Section 1.4) and what we designate as the Espinosa Lara-Rieutord law.

In Espinosa Lara & Rieutord (2011), a new model was proposed in order to better explain

the nature of latitudinal variations for stars at any rotation rate as an improvement over

the von Zeipel law. This new model has been compared to ESTER, and there has been an

overall good agreement between the two models. Therefore, we apply this newly dubbed

Espinosa Lara-Rieutord law into ROTIR. Espinosa Lara and Rieutord ultimately define a

temperature distribution of a rotating star as

Teff(r̃, θ) =

(
F?
σ

)1/4

=

(
L?

4πσGM?

)1/4
√

tanϑ

tan θ
g

1/4
eff

=

(
L?

4πσR2
e

)1/4(
1

r̃4
+ ω4

kr̃
2 sin2 θ − 2ω2

k sin2 θ

r̃

)1/8
√

tanϑ

tan θ
(2.19)

where F? is the flux of the star, σ is the Stefan-Boltzmann constant, L? is the luminosity

of the star, G is the gravitational constant, geff is the local gravity for any given point on a

star, r̃ = R(θ)/Re is the radius of the star normalized by the equatorial radius, and ϑ is an

arbitrary variable.
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Before we can derive a colatitude-dependent temperature, we first need to calculate the

effective temperature at the pole. We first start with the following solution for r̃

1

ω2
kr̃

+
1

2
r̃2 sin2 θ =

1

ω2
k

+
1

2
(2.20)

and the flux as defined in Espinosa Lara & Rieutord (2011)

Fωk
(θ) =

tan2 ϑ

tan2 θ
. (2.21)

Furthermore, two boundary conditions for Equation 2.21 are defined in Espinosa Lara &

Rieutord (2011) as

Fp,ωk
(θ = 0) = exp

(
2

3
ω2
kr̃

3

)
(2.22)

and

Fe,ωk
(θ = π/2) =

(
1− ω2

kr̃
3
)−2/3

. (2.23)

Now, we can finally arrive at a solution for the polar temperature given that Equation 2.20

becomes r̃p = 2/ (2 + ω2
k) and Equation 2.19 becomes

Teff,p =

(
L?

4πσR2
e

)1/4(
2

2 + ω2
k

)−1/2

exp

(
4

3

ω2
k

(2 + ω2
k)

3

)
. (2.24)

We can make a general solution for the colatitude-dependent temperature in terms of the

polar temperature using both Equations 2.19 and 2.24 as

Teff(r̃, θ)

Teff,p

=

(
1

r̃4
+ ω4

kr̃
2 sin2 θ − 2ω2

k sin2 θ

r̃

)1/8
√(

tanϑ

tan θ

)(
2

2 + ω2
k

)
exp

(
−4

3

ω2
k

(2 + ω2
k)

3

)
.

(2.25)

However, there is still an issue in solving for this arbitrary variable ϑ in Equation 2.25.

In order to solve for ϑ, we use the equation from Espinosa Lara & Rieutord (2011) written
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out as

cosϑ+ ln

(
tan

ϑ

2

)
=

1

3
ω2
kr̃

3 cos3 θ + cos θ + ln

(
tan

θ

2

)
. (2.26)

and use a combination of Broyden’s method (Broyden 1965) and the bisection method. We

note that this quasi-Newtonian method is used for radii r̃ between 0◦ < θ ≤ 71.25◦ (and

its symmetric counterpart in the southern hemisphere of the star). There are issues in root

solving between 71.25◦ < θ ≤ 90◦ using Broyden’s method, thus we rely on the bisection

method for accurate calculations of ϑ.

We implemented three different regularizations for use in ROTIR: positivity, l2 norm, and

total variation. After the user chooses a hyperparameter value with a regularization, the ge-

ometric square visibilities, closure phases, and triple amplitudes are compared to the data

using OptimPack to obtain the optimal temperature map under the assumption that the user

has obtained the correct physical characteristics of the star. However, OptimPack does not

produce any errors of the star, therefore we rely the NLopt algorithm, specifically the Nelder-

Mead Simplex method (Nelder & Mead 1965; Box 1965; Richardson & Kuester 1973) within

NLopt, for bootstrapping in order to incorporate for both statistical and systematic errors.

For this work, the type of bootstrapping implemented here is a random re-sampling of the

observation dates (or observing brackets). Within each Nelder-Mead search, an OptimPack

optimization is calculated to produce the lowest criterion value (χ2(x)+µR(x) within Equa-

tion 1.39) for the given stellar parameters. In addition to producing temperature maps, we

assume that any flux is linearly related to the temperature since observations from CHARA

occur in the Rayleigh-Jeans tail of the spectral energy distribution.
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Chapter 3
THE TEST CASE, λ ANDROMEDAE

We have several motivations for revisiting the RS CVn variable, λ And. The large spot

structures make it easier to detect and would be a viable candidate for interferometric image

reconstruction. Since it was previously imaged with a two-dimensional code, SQUEEZE

(Baron et al. 2010, 2012), it did not have any time-dependent imaging analysis. Therefore,

we aim to display the imaging capabilities of our code ROTIR and compare it with prior

imaging results. From an astrophysical standpoint, we aim to examine the spot evolution of

λ And over two different epochs, which will give a first direct indication of its stellar dynamo.

We also attempt to find any evidence for differential rotation as it may provide any further

insight into its stellar dynamo (Martinez et al. 2021).

3.1 Using Archival Data from the CHARA Array

We reuse the 2010 and 2011 data from Parks et al. (2021), shown in Table 3.1 and calibrators

in Table 3.2 used for each respective year, for our analysis. These data were obtained using

the CHARA Array (ten Brummelaar et al. 2005) with the MIRC instrument (Monnier et al.

2004, 2010) in H-band with the average wavelength of 1.61 µm. The observations were done

in prism mode (R ≈ 50), which contains eight spectral channels with an average spectral

bandwidth of 33.6 nm. The data taken in 2010 were taken with a combination of four out of

six telescopes which provide six visibilities, three independent bispectrum amplitudes (triple

amplitudes), and three independent bispectrum phases (closure phases). The 2011 data set

benefited from MIRC having been upgraded earlier that year, allowing for simultaneous use

of all six telescopes. These upgrades provided data sets to acquire up to 15 visibilities, 10

independent triple amplitudes, and 10 independent closure phases for each spectral channel.
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Table 3.1. CHARA Array Observations for λ Andromedae

UT date Average Baselines Number of Number of Rotation Phase Calibrators
MJD |V |2 points Closure Phases of Primary

2010 Aug 02 55410.4 S1-E1-W1-W2 167 88 0.0 7 And, 37 And
S2-E2-W1-W2

2010 Aug 03 55411.3 S1-E1-W1-W2 454 264 0.012 σ Cyg, 7 And, 37 And
S2-E2-W1-W2

2010 Aug 10 55418.3 S1-E1-W1-W2 425 288 0.146 σ Cyg, 7 And, 37 And
S2-E2-W1-W2

2010 Aug 11 55419.3 S1-E1-W1-W2 215 136 0.164 σ Cyg, 7 And, 37 And
2010 Aug 18 55426.3 S1-E1-W1-W2 429 272 0.293 σ Cyg, 7 And, 37 And

S2-E2-W1-W2
2010 Aug 19 55427.3 S1-E1-W1-W2 406 264 0.312 σ Cyg, 7 And, 37 And

S2-E2-W1-W2
2010 Aug 24 55432.3 S1-E1-W1-W2 526 320 0.404 σ Cyg, 7 And, 37 And

S2-E2-W1-W2
2010 Aug 25 55433.3 S2-E2-W1-W2 120 72 0.423 σ Cyg, 7 And, 37 And
2010 Sep 02 55441.3 S1-E1-W1-W2 522 336 0.570 7 And, 37 And

S2-E2-W1-W2
2010 Sep 03 55442.3 S1-E1-W1-W2 588 352 0.589 7 And, 37 And
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Table 3.1 (cont’d)

UT date Average Baselines Number of Number of Rotation Phase Calibrators
MJD |V |2 points Closure Phases of Primary

S2-E2-W1-W2
2010 Sep 10 55449.3 S2-E2-W1-W2 336 192 0.718 7 And, 37 And
2011 Sep 02 55806.5 W1-S2-S1-E1-E2-W2 360 432 0.310 σ Cyg, 7 And, 22 And, HR 653
2011 Sep 06 55810.5 W1-S2-S1-E1-E2-W2 392 376 0.384 σ Cyg, 7 And, 22 And, HR 653
2011 Sep 10 55814.5 W1-S2-S1-E1-E2-W2 360 432 0.458 7 And, 22 And
2011 Sep 14 55818.5 W1-S2-S1-E1-E2-W2 864 1104 0.532 7 And, 22 And, HR 653
2011 Sep 19 55823.5 W1-S2-S1-E1-E2-W2 808 1120 0.624 7 And, 22 And, HR 653
2011 Sep 24 55828.5 W1-S2-S1-E1-E2-W2 200 240 0.716 7 And, 22 And, HR 653, η Aur

Note. — Here we list the UT date, the average modified Julian date of the night of observation, the baselines used in their
corresponding configuration, the number of useful squared visibility points obtained for the night, the number of useful closure phase
points obtained for the night, the rotation phase for the primary star in λ And, and the calibrator stars that were used for each
corresponding night. The rotation phase is derived by using the first observation in 2010 as the zero point.



Table 3.2. Calibrators for λ Andromedae

Calibrator Name Calibrator Size Source Epoch Used
(mas)

7 And (HD 219080) 0.65± 0.03 Mourard et al. (2015) 2010
37 And (HD 5448) 46.66± 0.06 Roettenbacher et al. (2016b)a 2010
σ Cyg (HD 202850) 0.542± 0.021 Zhao et al. (2008) 2010
7 And (HD 219080) 0.676± 0.047 SearchCal (Bonneau et al. 2006) 2011
σ Cyg (HD 202850) 0.54± 0.02 Barnes et al. (1978) 2011
22 And (HD 571) 0.591± 0.041 SearchCal (Bonneau et al. 2006) 2011
HR 653 (HD 13818) 0.646± 0.045 SearchCal (Bonneau et al. 2006) 2011
η Aur (HD 32630) 0.336± 0.023 SearchCal (Bonneau et al. 2006) 2011

aThis is the semi-major axis angular separation of the binary calculated by Roettenbacher
et al. (2016b).

Note. — The angular sizes for the 2011 epochs are based on what was reported from
Parks et al. (2021) since we use their reduced and calibrated data. We use updated angular
sizes for each calibrator star in the 2010 epoch since we do a new reduction and calibration.

3.1.1 Data Reduction

Parks et al. (2021) detail the reduction steps and error corrections, but we will briefly note

some of their steps here. The data were reduced using the official IDL pipeline for reduc-

ing MIRC data (Monnier et al. 2007). Each block of raw fringe data contained coadded

frames and was corrected for any instrumental effects by background subtraction to remove

instrumental noise and foreground normalization to correct for any pixel-to-pixel variation.

Raw square visibilities, closure phases, and triple amplitudes are output through the use

of Fourier transforms and are photometrically calibrated. The data were corrected for the

atmospheric coherence time and optical changes in the beam path with the use of calibrator

stars that were taken either immediately before or after the target λ And.

In the 2010 data, one of the calibrators 37 And (HD 5448) was found to be a binary

by Che et al. (2012) and had its orbit fully characterized by Roettenbacher et al. (2016b).

Parks et al. (2021) formed a comparison of using 37 And as either a single star calibrator

or as a binary calibrator. They found that these comparisons only incurred an error of
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1.24% for the square visibilities, which is well below the multiplicative error correction, and

a closure phase standard deviation of 1.14◦. We execute a separate reduction and calibration

for the 2010 data set using the official MIRC reduction pipeline to correct for the 37 And

binary calibrator. We use the more recent calibrator diameter estimates, whose values differ

from Parks et al. (2021), for this new reduction and calibration. The data uncertainties also

go through a post-calibration process to account for known systematic errors of the MIRC

instrument.

For the 2010 data, we kept the same systematic errors as Parks et al. (2021). These errors

are different compared to the 2011 data set as the quality of the 2010 data are taken with

a four telescope configuration and are of lower quality, while the higher quality 2011 data

are taken with a six telescope configuration. A 15% multiplicative error correction was used

in association with the transfer function, a 2 × 10−4 additive error correction was used in

association with bias at low amplitudes for the square visibilities, and a 20% multiplicative

error correction and a 1 × 10−5 additive error correction was used for the triple amplitudes.

The same 1◦ error floor was used for the closure phases as was used in Zhao et al. (2011).

We present the square visibilities and closure phases for the 2010 data set in Figure 3.1.

We use the same calibrator diameter estimates listed in Parks et al. (2021) since the

2011 data set has been reduced and calibrated. Even though different angular sizes were

used for the calibration of the 2010 and 2011 data set for 7 And and σ Cyg, the differences

between the two angular sizes reported in Table 3.2 are small and within their respective

1σ errors. Systematic errors were taken into account during calibration similar to that of

Monnier et al. (2012). A 10% multiplicative error correction was used in association with the

transfer function for the 2011 data, and a 2 × 10−4 additive error correction was used for the

square visibilities. A 15% multiplicative error correction was used, and a 1 × 10−5 additive

error correction was used for all the triple amplitude data. Lastly, the same 1◦ error floor

was used for the closure phases just as it was presented in Zhao et al. (2011). We present

the square visibilities and closure phases for all of the 2011 data set in Figure 3.2.
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Figure 3.1 Top: |V|2 points are plotted against the baseline length (in Mλ or B/λ) for a
given baseline pair for all the data of λ And from the 2010 epoch. Bottom: Closure phase
points are plotted against the baseline length (in Mλ) for the given baseline trio for the same
2010 data.
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Figure 3.2 Top: |V|2 points are plotted against the baseline length (in Mλ) for a given
baseline pair for all the data of λ And from the 2011 epoch. Bottom: Closure phase points
are plotted against the baseline length (in Mλ) for the given baseline trio for the same 2011
data.
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3.2 Modeling λ Andromedae with SIMTOI

In order to get the first estimates of the physical parameters of λ And, we used the code

SIMTOI and implemented the MultiNest algorithm (outlined in Section 1.2.1) to obtain

global solutions to our multi-dimensional problem. We devised models of λ And with a

different number of circular spots, from three to six spots. Six parameters were used to model

the star itself: rotation period, rotation axis (inclination and position angles), temperature,

angular diameter, and coefficient of the power limb-darkening law (Hestroffer 1997). The

stellar parameters were given a uniform prior distributions within a wide range of values,

based on the stellar parameters listed in Parks et al. (2021) as a starting point (e.g., ±20°

for angular parameters). Four parameters were used per spot: longitude, latitude, diameter,

and flux. These spot parameters were also given uniform distribution. In particular, their

location was not constrained.

For each data set – 2010 or 2011 – SIMTOI renders an image per epoch (day). The ren-

dering resolution was set to a 64 × 64 image with a 0.05 mas per pixel resolution. MultiNest

was run for each model and converged after a few hours, providing maximum a posteriori

parameter values, as well as the marginal likelihood values (the so-called logZ).

3.2.1 Modeling Results

We report the χ2 and logZ values for each spot model in Table 3.3. We also provide the

approximate nominal values for the physical parameters. MultiNest does provide error bars,

but since they do not account for systematic errors, they are vastly underestimated. While

one could bootstrap the data before MultiNest runs, this would be too computationally

intensive and yet still imprecise due to our approximate modeling of spots. Our model spots

are circular, which may be an unrealistic assumption, but is sufficient to identify the main

potential location of intensity peaks on the surface. The logZ values are maximal for the five

spot model for the 2010 data and the four spot model for the 2011 data. The corresponding
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Table 3.3. SIMTOI Results

Number of Importance Nested χ2
ν

spots Sampling value (lnZ)

2010 data 2011 data 2010 data 2011 data

3 -67599.448761 10433.734767 56.855263 8.020829
4 -5968.401012 36157.820383 17.114268 3.102330
5 1420.128960 32785.721919 11.372939 3.710609
6 -45295.096429 30193.016672 38.679240 4.211333

Physical Parameters Value
(4 spot model based on 2011 data)
R? (mas) 1.37
Limb-darkening coefficient 0.22
Inclination (deg) 86.4
Position Angle (deg) 26.7
Rotation Period (days) 54.2

Note. — Higher lnZ value is better, lower χ2
ν is better. No error bars are calculated since the

models from SIMTOI using Multinest does not currently generate reliable error bars. We rely on
the imaging results for more precise measurements and calculation of errors.

reduced χ2 values are low for the 2011 data and much higher for 2010. Setting aside the

possible differences in error calibration between 2010 and 2011, this would indicate that the

2010 surface map is much more complex than the 2011 surface map (which we did confirm

during imaging in Section 3.3.1).

We ultimately choose the 4 spot model for the 2011 data as the best representative model

that produces the most accurate parameterization of λ And. The estimated 54.2 day rotation

period of the primary from our model using the 2011 data set is consistent with other works.

Henry et al. (1995) reports a rotation period 54.07 days from their photometric analysis while

Parks et al. (2021) reports a 54.02 ± 0.88 day rotation period from their own photometric

analysis and an average of a 56.9±8.8 day rotation period from their interferometric analysis.

While the 2010 data set had a larger rotation phase coverage than the 2011 data set, the

rotation period based on the 2011 data is more reliable based on MultiNest results and the

fitting of the model to the data. This is most likely due to the larger amount of (u, v)

coverage, number (u, v) points, triple amplitudes, and closure phase points in the 2011 data
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set compared to the 2010 data set. This calculated period from the four spot model using

the 2011 data is consistent with previous works.

3.3 Applying ROTIR to λ Andromedae

For λ And, we use positivity and total variation as the two regularizers needed to determine

the best image since Renard et al. (2011) determined that total variation outperforms other

regularization methods. Using the l-curve method (Renard et al. 2011), we choose a weight

of µ = 0.01 that has a small amount of regularization before entering into a regularization

dominated regime. We show examples of strong and weak regularization in Figure 3.3 for

λ And on 2011-Sep-14 proving why we need a good balance between regularization and pure

model fitting when finding an optimum image.

In order to determine of the number of tessels needed on the surface of the star, we use

on the parameters we obtained from modeling λ And using SIMTOI. With the CHARA

angular resolution limit being θ ≈ 0.60 mas at H-band (λ = 1.61µm), we estimate that we

need 40 pixels across the whole equator to meet Nyquist sampling (imaging resolution limit

is θ ≈ 0.30 mas in H-band). Therefore, we use 80 pixels around each latitude, including

pixels behind the star, and 40 pixels across each longitude for a total of 3200 pixels on the

surface of the star. Our sampling of pixels across the resulting images is solely based on the

number of pixels on the surface on the star and not the overall field, as the field size can be

arbitrarily chosen based on the plotting axes.

3.3.1 A First Look at Imaging

In order to find the best geometrical setup for the primary star in λ And, we test both a

spherical star and a Roche lobe shape to see if there are any signs of major Roche lobe

overflow. While Donati et al. (1995) and Parks et al. (2021) both suggest that there is no

Roche lobe overflow, we decide to investigate this for λ And since slight oblateness was found

in another RS CVn variable, ζ Andromedae (Roettenbacher et al. 2016b).
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Figure 3.3 Left: Here we show an example of a reconstruction made with a very weak
hyperparameter (µ = 0.0001). This is close to the classic example of overfitting an image
based on the data. Middle: Here we show where there is a good balance of fitting the data
to a model and the use of a hyperparameter (µ = 0.01). Right: Here we show an example
where the hyperparameter is dominant (µ = 0.5) and very loosely based on the data fitting
the model.

We start with the parameters from SIMTOI to create our spherical geometrical star and,

with the addition of several other orbital parameters such as the longitude of the ascending

node, argument of periapsis, and eccentricity found in Walker (1944), create our Roche lobe

geometry. Donati et al. (1995) states that λ And is coplanar, therefore we use the inclination

rotation axis of the primary star as the inclination of the orbit for the latter case. We use

the same hyperparameter and apply a uniform temperature map across the whole star as an

initial condition for both geometries. Using a Julia package called OptimPack that solves

for an optimum temperature map through a quasi-Newtonian method (Thiebaut 2002), we

obtain for the best temperature map given all our data in a given year. This algorithm

compares the Fourier transforms from Section 2.3 to the 2011 data to solve for the best

temperature map.

The resulting criterion for the Roche lobe geometry is higher (χ2(x)+µR(x) = 6288)

when directly comparing it to a spherical geometry (criterion = 4489). We also find that

the pole-to-equator ratio at the L1 Lagrangian point for the primary is 0.9967. With these

two calculations, we consider to believe that a spherical geometrical shape for the primary

for λ And is a good approximation for the true geometrical shape.
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Figure 3.4 Here we show a Mollweide plot of λ Andromedae for the 2010 epoch (left) and
2011 epoch (right) using our ROTIR code. We combine our 11 nights of data in 2010 across
39 nights and 6 nights of data in 2011 across 22 nights to make the temperature map for the
2010 epoch and 2011 epoch, respectively. We note that the pixels not within the observing
line-of-sight are calculated by starting at the effective temperature from Drake et al. (2011)
and modified through OptimPack.

Once we have determined that the spherical geometrical setup is the most optimal for

λ And and choose the most optimal regularization weight, we are now set for calculating the

best fit for the temperature map. We present the resulting Mollweide maps of λ And for

both epochs in Figure 3.4. However, these maps reflect no time variability and assume that

λ And is undergoing solid-body rotation. A better representation of the temperature maps

are shown in Figure 3.5 for each given night in 2010 and 2011.

A first look at the temperature maps between the 2010 and 2011 epochs shows a few

interesting characteristics about λ And’s surface. Comparing the two temperature maps

show notable similarities for two spots in the northern hemisphere between the two epochs

(i.e., the spot around 20◦ latitude and ∼ 100◦ longitude, and the spot around 0◦ latitude and

170◦ in both epochs). There are two other notable spots that either disappear or appear from

one epoch to the next. The spot in the 2010 epoch around 30◦ latitude and 150◦ longitude

seems to has disappeared within the 2011 epoch. A spot seems to be forming within the

2011 map in the southern hemisphere around −40◦ latitude and 50◦ longitude with hints of

its emergence with a similar place in the 2010 epoch. We note that the spot in the 2010

58



Figure 3.5 We show temperature maps of λ Andromedae for the 2010 epoch (left) and 2011
epoch (right) using our ROTIR code. Here, we note that our 2010 temperature map panels
do not reflect all 11 nights of data but only show a subset of 6 nights. The nights for the 2010
temperature map panels are chosen by only selecting one of two consecutive observational
nights and having the next temperature map panel be separated by at least 6 nights (i.e.,
2010-Aug-03, 2010-Aug-10, 2010-Aug-18, 2010-Aug-24, 2010-Sep-03, 2010-Sep-10).

epoch around 15◦ latitude and −90◦ does not appear in the 2011 epoch. This is most likely

due to missing rotational phase coverage in the 2011 data set.

3.3.2 Refinement of Physical Parameters

After finding the best model from SIMTOI, we use the parameters from the 4-spot model

and use the bootstrap method to find the final parameters and errors for the primary com-

ponent of λ And. We use 50 bootstrap iterations to solve for only four parameters: angular

radius, the limb-darkening coefficient, inclination, and position angle. We choose to leave the

rotation period of the primary fixed throughout this bootstrap because there is a degeneracy

towards lower rotation periods. Our bootstrap is dependent on the NLopt package (John-

son 2007) and Nelder-Mead Simplex method (Nelder & Mead 1965; Box 1965; Richardson

& Kuester 1973) within NLopt for obtaining our final parameters with their corresponding

errors.

We restrict lower and upper bounds within NLopt for these four parameters as follows:

[1.35, 1.39] mas for angular radius, [0.2, 0.3] for the limb-darkening coefficient, [70.0, 90.0]

degrees for inclination, and [20.0, 30.0] degrees for position angle. The final values for each
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variable parameter are chosen by averaging over all bootstraps and their associated errors

are calculated through their standard deviation. While our 50 bootstraps do not fully show

a Gaussian distribution and are restrained from doing a large amount of bootstraps due to

computation time, we find that our results for each varying parameter do not deviate largely

from the mean result. It is likely that doing more bootstraps will slightly increase the error

bars but not in a significant manner. We show the results of our bootstrap values in Figure

3.6.

Figure 3.6 Here we show the results of using the bootstrap method varying angular radius,
the limb-darkening coefficient, inclination, and position angle. We use 50 bootstraps in
order to calculate the final parameters of λ Andromedae and bin them into 10 different bins.
The x-axis here shows the range of the parameters from all the bootstraps and the y-axis
show the number of bootstraps within each bin. While we plot calculated values for each
bootstrap, we note that that the full range for each parameter are the following: [1.35, 1.39]
mas for angular radius, [0.2, 0.3] for the limb-darkening coefficient, [70.0, 90.0] degrees for
inclination, and [20.0, 30.0] degrees for position angle. The final parameters are calculated
from taking the average of each respective parameter with their associated errors calculated
from the standard deviation of the bootstrap results.
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3.3.3 Images of λ Andromedae

Temperature maps are not indicative of what is actually represented from observations. In

order to present an image, we include using a power law for limb-darkening (Hestroffer 1997)

and multiply it by the cells of the temperature maps that are visible to the observer. We use

the limb-darkening coefficient from our bootstrap to present the images in Figure 3.7 and

present the physical parameters for the primary star in λ And using the parameters from

our bootstrap in Table 3.4. The mass of λ And is calculated from our value of the physical

radius and the log g from Drake et al. (2011), and luminosity was calculated from the effective

temperature from Drake et al. (2011) and our value of the physical radius. These images are

produced from these final parameters (in Table 3.4) and run through OptimPack.

Figure 3.7 We show intensity maps of λ Andromedae for the 2010 epoch (left) and 2011
epoch (right) using our ROTIR code. Here, we note that our 2010 intensity map panels do
not reflect all 11 nights of data but only show a subset of 6 nights. The nights for the 2010
intensity map panels are chosen by only selecting one of two consecutive observational nights
and having the next intensity map panel be separated by at least 6 nights (i.e., 2010-Aug-03,
2010-Aug-10, 2010-Aug-18, 2010-Aug-24, 2010-Sep-03, 2010-Sep-10). All images here for
both the 2010 and 2011 epochs reflect the same parameters that are listed in Table 3.4.
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Table 3.4. Final λ Andromedae Parameters for the Primary

Observed Parameters Value Source Values from Literature Literature Reference

R? (mas) 1.371± 0.005 This work 1.33± 0.04 Nordgren et al. (1999)
1.379± 0.025 Parks et al. (2021)

Limb-darkening coefficient 0.231± 0.024 This work 0.229± 0.111 Parks et al. (2021)
Inclination (deg) 85.63± 2.32 This work 70.35± 6.7a Parks et al. (2021)
Position Angle (deg) 26.09± 0.82 This work 21.6± 7.5a Parks et al. (2021)
Rotation Period (days) 54.2 This work 56.9± 8.8a Parks et al. (2021)

Physical parameters

R? (R�) 7.787± 0.053 This workb 7.4± 0.2 Nordgren et al. (1999)
7.0± 0.7 Drake et al. (2011)

7.831+0.067
−0.065 Parks et al. (2021)

Teff (K) 4800± 100 Drake et al. (2011) − −
log g 2.75± 0.25 Drake et al. (2011) − −
M? (M�) 1.24± 0.72 This workc 1.3+1.0

−0.6 Drake et al. (2011)
logL?/L� 1.46± 0.04 This workd 1.37± 0.04 Drake et al. (2011)
distance (pc) 26.41± 0.15 van Leeuwen (2007) − −

aSince Parks et al. (2021) had multiple values reported for the same parameter, we show the averages of the respective
parameter here.

bBased on the angular radius from this work and the distance from van Leeuwen (2007).

cBased on the physical radius from this work and the log g from Drake et al. (2011).

dBased on the physical radius from this work and the effective temperature from Drake et al. (2011).

Note. — The observed parameters were optimized through a bootstrap approach with the exception of the rotation
period, which was fixed. We take our fixed rotation period parameter directly from the best model in SIMTOI.



3.4 Comparisons to Previous Work

3.4.1 SURFING vs ROTIR Imaging

We compare images made independently from ROTIR to another 3D image reconstruction

code called SURFace imagING (SURFING) in Figure 3.8. SURFING is a Monte Carlo based

3D imaging code written in IDL specifically written for imaging spheroids (see Roettenbacher

et al. 2016b). Overall, there is a good agreement between the two 3D imaging methods. Since

we are only focusing on the imaging comparison aspect for these two codes, we see that the

spot locations and contrast between the two are very similar, with a few minor differences,

as shown in Figures 3.5 and 3.8.

Figure 3.8 Temperature maps of λ Andromedae in 2010 (left) and 2011 (right) using SURF-
ING code. The 2010 temperature maps were made by using two different consecutive nights
and merging the data as one night. We find that this does not largely affect the results of the
imaging since the rotation made from two consecutive nights only span ∼2% of the rotation
period.

Images from both codes show that the spots on λ And from both epochs seem to favor

certain latitudes and are mostly concentrated in the northern hemisphere. For both the 2010

and 2011 epochs, we find that most of the spots are centered around +20◦ latitude. These

spot concentrations to a certain latitude are consistent with the interferometric images shown

in Roettenbacher et al. (2016b) of ζ Andromedae, another RS CVn variable. The absence
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of symmetrical spots on active latitudes as observed on the Sun is evidence that λ And may

not have a solar-like dynamo.

3.4.2 Inclination Disagreement

Our results of this work largely agree to that of Parks et al. (2021) with the inclination

of λ And being the only disagreement. Parks et al. (2021) used a combination of a genetic

algorithm (Charbonneau 1995) and the Nelder-Mead Simplex method (Nelder & Mead 1965;

Box 1965; Richardson & Kuester 1973), in order to make individual models for each night of

data. Each surface model calculates an angular diameter, limb-darkening coefficient based on

the power law, a starspot covering factor, starspot latitude, starspot longitude, and starspot

intensity ratio for λ And. Once all the models were made, Parks et al. (2021) traced each

starspot on the surface for each epoch. Ellipse fits to starspot positions were calculated, and

an average computed position angle and inclination angle were made from these ellipse fits

for each year.

Parks et al. (2021) reported that the inclination of primary from their 2010 and 2011 data

is 75± 5.0◦ and 66.4± 8.0◦, for each respective year, giving an overall average of 70.35± 6.7◦

while we report an inclination of 85.63 ± 2.32◦. We believe that our calculations from this

work are accurate for several reasons. The initial SIMTOI calculations were done with a

global search with no restrictions in parameter space, including inclination. The resulting

parameters obtain from SIMTOI were then used in ROTIR with a sufficient range that in-

cluded the inclination value from Parks et al. (2021). If the value for our inclination were

incorrect and actually leaned towards this previous value, the resulting bootstrap method

would reflect it by converging on the lower bounds of our parameter space using our boot-

straps. In addition, the work by Parks et al. (2021) relied on independent models for each

night and tied them together to form an analysis while we use all the data of each epoch

together to form one image.
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3.5 Beyond Solid Rotation Imaging

3.5.1 Simulating Differential Rotation

In our Figures 3.4 - 3.8 using SIMTOI/ROTIR, SURFING, and in Parks et al. (2021), all

imaging has been performed assuming that the star is rotating as a solid body; however,

we attempt to estimate differential rotation through our data. Henry et al. (1995) studied

photometry of λ And over 14 years and found evidence of shear across the surface. In order to

see if we are able to detect any differential rotation with our interferometric data, we simulate

starspots on a star with a low differential rotation coefficient and a low temperature gradient

on the surface and have the spot move across a few days with the same period as λ And.

Then we do a cross-correlation for each latitude on the star and see if there is any deviation

from zero.

Our simulations show two different scenarios. The first simulation presents a highly

unrealistic starspot that is two pixels wide in longitude and spanning throughout all latitudes

from pole to pole. Our second simulation shows two circular starspots that are 5 pixels in

radius at +45◦ and −45◦ latitude (with respect to the equator) and at 135◦ longitude. We

presents our simulations of a simple star with similar parameters as λ And using differential

rotation coefficient from Henry et al. (1995) of k = 0.04, which corresponds to differential

angular velocity (∆Ω) of 0.26, in Figure 3.9.

3.5.2 Testing Differential Rotation on λ Andromedae

We apply the same cross-correlation method for the 2011 data set and calculate the devia-

tions. Since the goal is to detect any shear as evidence for differential rotation, we reconstruct

an individual temperature map for each observation date from the 2011 epoch but initialize

with the temperature map obtained from Figure 3.4 and show our results in Figure 3.10.

We find that we are unable to detect any differential rotation with our data due to three

reasons. First, our data does not span an entire rotation, therefore we are not able to compare
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Figure 3.9 We show simulations of differential rotation by doing a correlation using the
unrealistic latitudinal starspot (left) and two starspots (middle) of a fake star with the same
parameters of λ Andromedae within the 2011 epoch (with the exception of the temperature
map). The differential rotation coefficient we use here is ∆Ω of 0.26 from Henry et al. (1995).
The plot (right) shows the number of pixels that have shifted in respect to the longitude
after subtracting off the total shift of a spot. The pink line at this coefficient represents the
unrealistic starspot change in pixels, while the yellow line shows the two starspots change in
pixels as a function of the longitude. We choose to compare the first and last observations
within the 2011 epoch to show the maximum amount of correlation.

the same spots from the previous rotation. Second, λ And is a very slow rotator, so we do

not have enough resolution to detect any small amounts of differential rotation if differential

rotation truly exists on λ And. In fact, the large-scale magnetic spots on λ And may not

be able to be used to measure any real surface differential rotation based on its dynamo.

Korhonen & Elstner (2011) states that surface differential rotation can only be recovered by

observing the spot motion of small spots, unlike λ And’s large-scale magnetic spot structure.

Third, the amount of square visibilities and closure phases for each observation are sparse

for most observations.

3.6 Imaging Beyond the Primary

3.6.1 Updated Orbital Parameters and Secondary Parameters

Using the updated parameters from the primary star in λ And in this work, the mass ratio

from Donati et al. (1995) and Kepler’s Third Law, we are now able to calculate the mass of
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Figure 3.10 The plot shown here (left) is similar to that of Figure 3.9 but with the ac-
tual λ Andromedae data. The different symbols denote correlations of temperature maps
compared to the first observation of λ Andromedae in the 2011 epoch. The individual tem-
perature maps for each observation date in 2011 (right) were constructed using the original
temperature map from Figure 3.4. These maps reflect the difficulty in searching for shear at
the one pixel level since each map is slightly different compared to the previous observation
and results in no visible correlation.

the secondary and the semi-major axis of the binary system. We calculate that the mass for

the companion star is 0.15+0.09
−0.05 M� given that the calculated semi-major axis is 6.12 mas.

3.6.2 The Search for the Secondary

We begin our search for the companion by calculating estimates on the luminosity ratio and

angular size of the secondary to narrow down our search. For the luminosity ratio, we used a

mass-luminosity relation for each corresponding star in our system (L2/L1 = 0.23(M2.3
2 /M4

1 ))

and calculated to be approximately L2/L1 = 0.00121. If we assume that the H-band flux ratio

is the same as the luminosity ratio of the two stars and using the H-band magnitude of the

primary 1.40 mag (Ducati 2002), this would correspond to an estimated H-band magnitude of

8.7 mag for the secondary. This is slightly beyond MIRC’s magnitude limit and not likely to

be detected. Furthermore, the magnitude difference between the primary and the secondary

(∆H = 7.3 mag) are past MIRC’s magnitude contrast difference, as proven by the visibility

and closure phase modulation method from the study in Gallenne et al. (2015). Regardless,
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we still investigate the possibility of detection. In order to calculate the estimated angular

size of the secondary, we first calculate the physical size by using the mass-radius relation

(R = 0.0753 + 0.7009M + 0.2356M2) developed by Maldonado et al. (2015) for low-mass

stars. Given that the calculated physical radius is 0.19 R�, we find that the estimated

angular radius to be 0.03 mas.

Now that we have an estimation of the angular size and flux ratio, we do a grid search in

right ascension and declination over a 10 mas distance from the primary star with a 0.1 mas

step size for every night in the 2011 epoch. This approach is similar to that adopted in Baron

et al. (2012) and CANDID (Gallenne et al. 2015) with the difference that the primary is using

the model visibilities obtained during image reconstruction. We model binary visibilities and

vary both the brightness ratio and the angular radius for the secondary using NLopt for each

section of the grid. We restrict the parameter space for the angular radius to [0.0, 1.0] mas

while restricting the flux ratio (secondary/primary flux) for the system from [0.0, 0.2].

While we do find that the average flux ratio using the 2011 data set of 0.00213± 0.00116

is within the theoretical estimated value, we find two major reasons for believing that we

were not able to find the secondary companion. First, the average angular radius found

by using the 2011 data is 0.602± 0.356 mas, largely inconsistent with our estimation using

mass-radius relation for low-mass stars. Our errors for both the flux ratio of the system and

the angular size of the secondary were calculated by taking the standard deviation from all

the values from all the nights. The values of angular radius for an individual night were also

seen to hit a boundary condition (either 0 mas or 1 mas), thus assessing that the calculated

values are incorrect. Second, the best fit right ascension and declination positions for each

night in the 2011 data set were positioned in a random assortment on the grid space with no

clear indication of a circular or elliptical orbit (see Figure 3.11). This confirms our earlier

assumption that the secondary would be undetectable as it is beyond MIRC’s magnitude

limit.
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Figure 3.11 We show the results of the grid search in right ascension and declination for each
night of data in the 2011 epoch. Each night is labeled with a blue dot and the primary is
centered in the middle at (0,0) as a black star.

Another reason that we may not be able to find the secondary for λ And could be due to

lack of (u, v) coverage for each individual night in the 2011 epoch data set. For this reason,

we proceed to not use the 2010 data set to find the secondary as those observations were

taken with two different sets of 4T observations in a given night and as a result do not in

better (u, v) coverage compared to the 2011 data set.

3.7 Discussion of Imaging Results

Our imaging results compared to that of Parks et al. (2021) provides new insight to the

evolution of spots on λ And. Since the spots for both epochs appear to favor the northern

hemisphere, this is indicative that λ And has a non-solar dynamo. There is evidence on

other stars that concentration of spots to certain latitudes or longitudes, most noticeably on

the other interferometrically imaged RS CVn variable ζ Andromedae (Roettenbacher et al.

2016b). The formation of large spot formation also provides insight into its stellar cycle,

which could potentially lead to confirming its 11.4 year cycle obtained from photometry.
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Chapter 4
RAPID ROTATORS

Previous interferometric imaging campaigns obtained detailed surface images of several

rapid rotators but suffered from limited analysis on limb-darkening or had limited (u, v)

coverage. A better understanding of limb-darkening and gravity darkening would provide

an improved understanding of the surface temperature distributions of rapid rotators. This

ultimately provides a deeper understanding of the physical characteristics of the exterior and

interior of rapidly rotating stars. The work here aims to present comparisons between the

two-dimensional theoretical radiative transfer model ESTER, surface temperature distribu-

tion laws, and surface imaging. We further aim to display the robust imaging capabilities of

ROTIR and apply it to the rapidly rotating star Alderamin.

4.1 Target Selection

The catalog within van Belle (2012) lists several rapid rotator candidates that can be observed

and potentially imaged with optical interferometry. We impose several limitations for the

next candidates to observe, specifically at the CHARA Array. Our selection criterion aims

to find rapid rotators with an angular size of at least 1.5 mas (polar or equatorial angular

size) and stars with H < 6 mag, limitations which are based on the imaging resolution

limit of CHARA and the MIRC-X instrumental magnitude limit. Furthermore, we limit our

selection to stars with a declination above −10◦, based on CHARA’s geographic location.
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Table 4.1. CHARA Array Observations for Alderamin

UT date Average Baselines Number of Number of Calibrators
MJD |V |2 points Closure Phases

2019 Aug 09 58704.52 E1-W2-W1-E2 720 464 16 Cep
2019 Aug 10 (bracket 1) 58705.35 E1-W2-W1-S2-E2 1202 1230 HD 195820, 16 Cep
2019 Aug 10 (bracket 2) 58705.35 E1-W2-W1-S2-E2 1227 1239 16 Cep
2019 Aug 10 (bracket 3) 58705.35 E1-W2-W1-S2-E2 1231 1237 16 Cep, HD 210855

2019 Aug 11 58706.34 E1-W2-W1-S2-E2 1191 1200 16 Cep, HD 210855
2019 Aug 12 58707.48 E1-W2-W1-E2 720 480 16 Cep, HD 210855

Note. — Here we list the UT date, the average modified Julian date of the night of observation, the baselines
used in their corresponding configuration, the number of useful squared visibility points obtained for the night,
the number of useful closure phase points obtained for the night, and the calibrator stars that were used for each
corresponding night.



Table 4.2. Calibrators for Alderamin and Caph

HD Number Calibrator Name Calibrator Size Source
(mas)

HD 195820 0.751± 0.058 SearchCal (Bonneau et al. 2006)
HD 209369 16 Cep 0.621± 0.018 Ligi et al. (2016)
HD 210855 0.594± 0.058 SearchCal (Bonneau et al. 2006)

4.2 Observations, Data Reduction, and Calibration

We revisit the previously imaged rapid rotator Alderamin using the CHARA Array with the

MIRC-X instrument. The MIRC-X instrument (Kraus et al. 2018; Anugu et al. 2018) is an

upgraded version of the original MIRC instrument and provides data with better signal-to-

noise thanks to an upgraded camera and optics upgrades. The observations were done in

the grism mode (R = 190), which contains approximately 36 spectral channels. Alderamin

only benefited from the simultaneous use of five telescopes due to its high declination. The

data used in this manuscript are listed in Table 4.1.

The data were reduced using the official Python MIRC-X reduction pipeline (Le Bouquin

2020). The reduction pipeline is divided into three major steps: a pre-processing step, a

real-time signal step, and a calibration step (as detailed in Anugu et al. 2020). During the

pre-processing step, the pipeline first associates which data files are target data and shutters.

It proceeds to do background subtraction to remove any instrumental noise and remove bad

pixels, flat-fielding to correct for any pixel-to-pixel variation, and spectral calibration. During

the real-time signal step, the flux of each beam is used in comparison with the fringes to

ultimately extract the true flux of each fringe in order to compute raw visibilities. The final

calibration uses calibrator stars to correct for the atmospheric coherence time and optical

changes in the beam path, thus computing the observed visibilities. The stars used for the

calibrating step are presented in Table 4.2.
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We apply the same corrections as Monnier et al. (2012) after the MIRC-X pipeline re-

ductions in order to better account for systematic errors. Two types of systematic error

corrections were used for the squared visibilities: a 6.6% multiplicative error correction was

used in association with the transfer function and a 2 × 10−4 additive error correction was

used in association with correcting biases at low fringe or bispectrum amplitude. A 10%

multiplicative error correction and 1× 10−5 additive error correction was used for the triple

amplitudes. Finally, a 1◦ error floor was used for the closure phases. We show the squared

visibilities and closure phases from data obtained in August 2019 for Alderamin and Caph

in Figure 4.1.
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Figure 4.1 Top: |V|2 points are plotted against the baseline length (in Mλ) for a given
baseline pair for all the data of Alderamin taken in August 2019. Bottom: Closure phase
points are plotted against the baseline length (in Mλ) for the given baseline trio for the same
data.
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4.3 SIMTOI Modeling of Alderamin

We follow a similar procedure to that outlined in Section 3.2. We use SIMTOI and the

MultiNest algorithm to obtain a model that solves for the rotation axis (inclination and

position angle), rotation period, polar angular radius, fraction of critical angular velocity,

gravity darkening coefficient β (from Equation 1.40), and the coefficient of the power limb-

darkening law. The priors used for each model were given a wider distribution for some

parameters or a more constrained distribution for more established parameters and were

based on prior interferometric studies on the systems.

We use our interferometric data from Alderamin and use it in SIMTOI by making a

Roche model rendered on a 64 × 64 image with a 0.05 mas per pixel resolution. To account

for the discrepancies between in van Belle et al. (2006) and Zhao et al. (2009) for Alderamin’s

analysis, we only allow a large range for the inclination (as other parameters seem to agree

with each other). The priors used in MultiNest for Alderamin are restricted to a specific

range and are as follows: [0.63, 0.69] mas for the polar angular radius, [0.8, 0.99] for the

fraction of the critical angular velocity, [0.08, 0.25] for the gravity darkening coefficient, [0.0,

0.25] for the limb-darkening coefficient, [45.0, 90.0] degrees for inclination, [-180.0, -170.0]

degrees for position angle, and [11, 13] hours for the rotation period. We show the results

of each MultiNest run in Table 4.3.

4.4 Applying ROTIR to Alderamin

We apply the same general methodology of Section 3.3 to Alderamin. We start with the

parameters obtained from SIMTOI to make temperature maps (using OptimPack) and apply

the l-curve method, ultimately choosing a hyperparameter value of µ = 0.05. We use 80

pixels around each latitude and 40 pixels across each longitude for a total of 3200 pixels on

the surface of each star.
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Table 4.3. SIMTOI Results for Alderamin

Object Importance Nested χ2
ν

Sampling (lnZ)

Alderamin 50671.778799 2.774372

Physical parameters Solution
R?,p (mas) 0.666
Limb-darkening coefficient 0.001
ωc 0.945
β 0.179
Inclination (deg) 76.55
Position Angle (deg) -176.91
Rotation Period (hours) 11.76

Note. — No error bars are calculated since the models from
SIMTOI using Multinest does not currently generate reliable
error bars. We rely on the imaging results for more precise
measurements and calculation of errors.

4.4.1 Alderamin Imaging

We apply a Roche object geometry to Alderamin and use the bootstrap method in order to

find its physical parameters and their corresponding errors. We apply 30 bootstrap iterations

to solve for seven parameters: polar angular radius, the limb-darkening coefficient, fraction of

the critical angular velocity, the gravity darkening coefficient, inclination, position angle, and

rotation period. We use the Nelder-Mead Simplex method within NLopt and OptimPack to

obtain these final parameters. We restrain NLopt within the following bounds for each given

parameter: [0.63, 0.69] mas for the polar angular radius, [0.0, 0.02] for the limb-darkening

coefficient, [0.85, 0.99] for the fraction of the critical angular velocity, [0.08, 0.25] for the

gravity darkening coefficient, [45.0, 90.0] degrees for inclination, [-180.0, -170.0] degrees for

position angle, and [11, 13] hours for the rotation period. While we are limited again to a

small amount of bootstraps due to large computation time, the errors incorporate to first

degree any systematic and statistical errors within the data. We show the results of our
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bootstraps in Figure 4.3 and the final parameters of Alderamin in Table 4.4. The final

temperature map and image of Alderamin is shown in Figure 4.2.

The physical parameters calculated for the rapid rotator Alderamin in Table 4.4 are more

complex than a spherical star. The equatorial angular radius for Alderamin was calculated

on the critical angular velocity and is ultimately reliant on Equation 2.3. The physical radii

are based on the physical distance from van Leeuwen (2007) and the effective temperatures

are obtained from the imaging results where the polar effective temperature was based on

Zhao et al. (2009) as a starting temperature. The equatorial velocity is calculated from

our calculation of the physical polar radius, the physical equatorial radius, and the rotation

period. The oblateness mass here was calculated using our physical polar and equatorial

radii, rotation period, and the fraction of the critical angular velocity values.

Figure 4.2 We show the surface temperature profile (left) and an image (right) of Alderamin.
The temperature map is in Kelvin while the image is displayed with relative intensity to the
given limb-darkening. We note that the intensity image does not deviate largely from the
temperature map since our results favored a low limb-darkening coefficient.
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Figure 4.3 We show the results of using the bootstrap method varying angular radius, the
limb-darkening coefficient, fraction of the critical angular velocity, the gravity darkening
parameter, inclination, and position angle. We use 30 bootstraps in order to calculate the
final parameters of Alderamin and bin them into 10 different bins. The x-axis here shows the
range of the parameters from all the bootstraps and the y-axis show the number of bootstraps
within each bin. While we plot calculated values for each bootstrap, we note that that the
full range for each parameter are the following: [0.63, 0.69] mas for the polar angular radius,
[0.0, 0.02] for the limb-darkening coefficient, [0.85, 0.99] for the fraction of the critical angular
velocity, [0.08, 0.25] for the gravity darkening coefficient, [45.0, 90.0] degrees for inclination,
[-180.0, -170.0] degrees for position angle, and [11, 13] hours for the rotation period. The
final parameters are calculated from taking the average of each respective parameter with
their associated errors calculated from the standard deviation of the bootstrap results.
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Table 4.4. Final Alderamin Parameters

Observed Parameters Value Source Values from Literature Literature Reference

R?,p (mas) 0.680± 0.006 This work 0.6753+0.0119
−0.0135 van Belle et al. (2006)

0.672± 0.034 Zhao et al. (2009)
R?,e (mas) 0.820± 0.014 This work 0.8767+0.0293

−0.0183 van Belle et al. (2006)
0.852± 0.035 Zhao et al. (2009)

Limb-darkening coefficient 0.010± 0.006 This work − −
ωc 0.891± 0.018 This work 0.9585+0.0197

−0.0116 van Belle et al. (2006)
0.941± 0.020 Zhao et al. (2009)

β 0.181± 0.037 This work 0.084+0.026
−0.049 van Belle et al. (2006)

0.216± 0.021 Zhao et al. (2009)
Inclination (deg) 80.35± 6.15 This work 88.2+1.8

−13.3 van Belle et al. (2006)
55.70± 6.23 Zhao et al. (2009)

Position Angle (deg) −177.20± 0.87 This work 17.2+3.2
−4.3 van Belle et al. (2006)

−178.84± 4.28 Zhao et al. (2009)
Rotation Period (hours) 12.09± 0.47 This work 12.11± 0.26 van Belle et al. (2006)

Physical parameters

R?,p (R�) 2.199± 0.021 This work 2.175± 0.046 van Belle et al. (2006)
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Table 4.4 (cont’d)

Observed Parameters Value Source Values from Literature Literature Reference

2.162± 0.036 Zhao et al. (2009)
R?,e (R�) 2.652± 0.046 This work 2.823± 0.097 van Belle et al. (2006)

2.740± 0.044 Zhao et al. (2009)
Teff,p (K) 8849± 300 Zhao et al. (2009) as prior 8440+430

−700 van Belle et al. (2006)
8588± 300 Zhao et al. (2009)

Teff,e (K) 6785± 360 This work ∼ 7600 van Belle et al. (2006)
6574± 200 Zhao et al. (2009)

ve (km s−1) 266± 11 This work 283± 19 van Belle et al. (2006)
v sin i (km s−1) 263± 12 This work 283± 19 van Belle et al. (2006)

265 Abt & Moyd (1973)
196 Royer et al. (2007)

M? (M�) 2.39± 0.25 This work 2.0± 0.15 van Belle et al. (2006), model mass
1.92± 0.04 Zhao et al. (2009), model mass

L?,bol (L�) 24.2± 3.5 This work 18.1± 1.8 Zhao et al. (2009)
[Fe/H] 0.09 Gray et al. (2003) − −
distance (pc) 15.04± 0.02 van Leeuwen (2007) − −

Note. — The equatorial angular radius was calculated based on the fraction of the critical angular velocity. The physical polar and
equatorial radii are based on our angular measurements from this work and the distance from van Leeuwen (2007). The mass here
(the oblateness mass) was calculated based on the rotation period, the equatorial and polar physical radii, the fraction of the critical
angular velocity.



4.4.2 Imaging Analysis

The imaging results presented are mostly consistent with the SIMTOI priors, with the ex-

ception of the angular radius, the limb-darkening coefficient, and the gravity darkening

parameter. The model preferred by SIMTOI suggests that Alderamin has very little to no

limb-darkening, which is unrealistic since all stars at least exhibit a small amount of limb-

darkening. Our imaging results favored a limb-darkening coefficient that is a factor of 10

greater than the SIMTOI model, and as expected, favored a higher angular diameter. The

gravity darkening parameter for the imaging is lower than our model, but we believe this

could be tied to the adjustment of the limb-darkening coefficient and angular diameter.

Our interferometric image of Alderamin mostly agrees with literature results, with some

slight deviations. The ωc reported from our reconstruction produced a lower break-up ve-

locity compared to van Belle et al. (2006) and Zhao et al. (2009), however our results are

in agreement with the Espinosa Lara-Rieutord law (see Section 4.5). Additionally, we find

that our β value is again in agreement with the Espinosa Lara-Rieutord law and from Zhao

et al. (2009), who reports a slight overestimate of the real value. The inclination value is in

agreement with that of van Belle et al. (2006), but is more than 4 standard deviations (4σ)

from that in Zhao et al. (2009). Perhaps this is a hint that the true value of the inclination is

between that of previous works and within 1σ of our result. The position angle is in partial

agreement with that of van Belle et al. (2006) as their first reported value from an ellipsoidal

fit was 3◦ (here the position angle was defined differently than our work as noted by Zhao

et al. 2009), but their final Roche model deviated from this value (as shown in Table 4.4).

However, our value of position angle is in good agreement with Zhao et al. (2009). We believe

these discrepancies could be a consequence of the calibration within data reduction as both

squared visibilities and, more importantly, the closure phase is sensitive to the viewing angle

of Alderamin. Lastly, our v sin i is in agreement with van Belle et al. (2006) but remains in

partial agreement with spectroscopic results (e.g., Abt & Moyd 1973; Abt & Morrell 1995;

Royer et al. 2007) as these results have historically spanned a large range of values.
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The mass of Alderamin has been previously calculated through theoretical models and has

been found to be approximately two times the mass of the Sun. Our work derives the mass

through a different scheme by relying on the star’s rotation rate (to obtain the equatorial

linear velocity), its physical size, and the fraction of the critical angular velocity. This

oblateness mass method has been previously used by Che et al. (2011), has been shown to

be within 1σ compared to a mass obtained through theoretical evolutionary codes. Therefore,

we believe that our calculated oblateness mass for Alderamin, which value only differs from

previous works by ∼ 1.5σ, may be larger than the true value. This may stem from a lower

ωc and rotation period as our oblateness mass calculation is sensitive to small deviations for

these parameters.

It is important to note that slightly different distance measurements were used between

previous works and what we present here. van Belle et al. (2006) and Zhao et al. (2009) cite

the original parallax measurement from Perryman et al. (1997) which obtained a parallax

measurement of 66.84± 0.49 mas and yielded a distance of 14.96± 0.11 pc using the inverse

parallax method. We use the updated Hipparcos parallax measurement from van Leeuwen

(2007) of 66.50±0.11 mas, which yields a distance of 15.04±0.02 pc. This, in turn, shows that

the physical polar radius in van Belle et al. (2006) and Zhao et al. (2009) are slightly larger

than previously noted and is in better agreement with our value. The physical equatorial

radius, as a consequence of a lower break-up velocity and as expected, is further deviated

from previous works.

4.5 Comparing Observations to Gravity Darkening Models

The previous imaging campaigns by Monnier et al. (2007), Zhao et al. (2009), and Che et al.

(2011) allowed for the gravity darkening parameter to be non-restricted and its value varied

from star to star. It was determined by Che et al. (2011) that the best gravity darkening

parameter was β = 0.19 for hotter rapid rotators. Comparing the effective temperature

ratios to the fraction of the critical angular velocities of stars, one can see in Figure 4.4
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that the Espinosa Lara-Rieutord law is in slightly better agreement with observational work

compared to that of a constant β = 0.19. Specifically, the analysis by Vega in Monnier

et al. (2012) showed the concordance model of β = 0.231 (which used a v sin i value from

spectroscopy as a prior) is in better agreement with the Espinosa Lara-Rieutord law than the

β = 0.19 model. It is also seen in Figure 4.4 that at lower rotation rates, the Espinosa Lara-

Rieutord law turns into the standard β = 0.25 von Zeipel law (as proven within Espinosa

Lara & Rieutord 2011). As a result, we aim to calculate a better method in adopting the

best gravity darkening parameter for rapid rotators.

Figure 4.4 Both plots show the effective temperature ratio (equatorial to polar) of stars
against different rotation rates for different laws. The standard von Zeipel law (von Zeipel
1924a,b) with β = 0.25 is plotted in the solid cyan line, the exponent recommended by
Lucy (1967) of β = 0.08 is plotted in orange dashed cross lines, the recommended exponent
by Che et al. (2011) of β = 0.19 is plotted in blue dashed dotted lines, and the Espinosa
Lara-Rieutord law (Espinosa Lara & Rieutord 2011) is plotted in red dashed lines. We
over plot the empirically derived β values of Altair (Monnier et al. 2007) as shown in the
solid purple circle, Alderamin (Zhao et al. 2009) as shown in the black upwards triangle,
Rasalhague (Zhao et al. 2009) as shown in the brown solid “X” symbol, Caph (Che et al.
2011) as shown in the solid green diamond, Regulus (Che et al. 2011) as shown in the solid
downwards triangle, and Vega (Monnier et al. 2012) as shown in the solid gray square. The
left plot show the full range of rotation, while right plot shows a zoomed in version of the
left plot for detail.
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To start calculating a new method to determine the best β, we start by using the tem-

perature difference between the pole and the equator, as formulated by Aufdenberg et al.

(2006),

Teff,p − Teff,e = Teff,p

[
1−

(
ω2
c

η2
− 8

27
ηωc

)β]
(4.1)

where

η = 3 cos

[
π + cos−1(ωc)

3

]
. (4.2)

We can rearrange Equation 4.1 as follows

Teff,e

Teff,p

=

(
ω2
c

η2
− 8

27
ηωc

)β
(4.3)

as it allows us to start making a more direct comparison between the general von Zeipel law

and the Espinosa Lara-Rieutord law. Using the solution from Equation 2.23 in Equation

2.19, we can form a solution for the effective temperature at the equator using the Espinosa

Lara-Rieutord law,

Teff,e =

(
L?

4πσR2
e

)1/4 (
1− ω2

k

)1/12
. (4.4)

Together using Equations 2.24 and 4.4, we make another comparison to the effective tem-

peratures between the equator and the pole (Espinosa Lara & Rieutord 2011) as

Teff,e
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=
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2 + ω2
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)1/12
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)
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Using both Equations 4.3 and 4.5, we can formulate a solution for the gravity darkening

coefficient β dependent on the Espinosa Lara-Rieutord law as
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(4.6)
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Table 4.5. Recommended Values for β Based on Espinosa Lara-Rieutord Law

Object ωc β Recommended value Literature Reference
(Literature value) (Literature value) for β

Alderamin (α Cep) 0.941± 0.020 0.216± 0.021 0.183± 0.013 Zhao et al. (2009)
0.891± 0.018 0.181± 0.037 0.195± 0.010 This work

Altair (α Aql) 0.923± 0.006 0.190± 0.012 0.189± 0.004 Monnier et al. (2007)
Caph (β Cas) 0.920+0.024

−0.034 0.146+0.013
−0.007 0.189± 0.020 Che et al. (2011)

Rasalhague (α Oph) 0.885± 0.011 0.25 (fixed) 0.197± 0.006 Zhao et al. (2009)
Regulus (α Leo) 0.962+0.014

−0.026 0.188+0.012
−0.029 0.175± 0.020 Che et al. (2011)

Vega (α Lyr) 0.774± 0.012 0.231± 0.028 0.218± 0.007 Monnier et al. (2012)

Note. — The errors for recommended value for β were derived through error propagation using the literature
values of ωc and its corresponding errors.

and after a simple rearrangement

β =

ln

[√
2

2+ω2
k

(1− ω2
k)

1/12
exp

(
−4

3

ω2
k

(2+ω2
k)

3

)]
ln
[
ω2
c

η2 − 8
27
ηωc

] . (4.7)

This leaves β solely dependent on the fraction of the critical angular velocity (since once can

easily convert from ωk and η to ωc). We present the relation of Equation 4.7 in Figure 4.5

and list our recommended values of β against the literature values of the gravity darkening

parameter in Table 4.5. We suggest that Equation 4.7 be used as a prior for future rapid

rotator modeling/image if the fraction of the critical angular velocity is known a priori.

4.6 ESTER Modeling

We compare our empirically derived stellar parameters to those produced from ESTER. The

major requirements as inputs for ESTER are the mass of the star and the mass fraction for

hydrogen and metals. While there are various choices for which opacities and equations of

state within ESTER, we ultimately choose OPAL opacities and equation of state (Rogers

et al. 1996) to model both stars. In addition, we estimate that Alderamin is near solar
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Figure 4.5 We plot the gravity darkening parameter β from the general von Zeipel law as a
function of the critical angular velocity for the Espinosa Lara-Rieutord law.

metallicity such that the hydrogen mass fraction is X = 0.70 and the metal mass fraction is

Z = 0.02.

We follow a general procedure for producing a model for Alderamin. First, we compute

a homogeneous (one-dimensional) model with the appropriate mass of the star and mass

fractions. Then we evolve this homogeneous model by changing the hydrogen content of the

core. Finally, we rotate the evolved model to a given break-up velocity. We also follow the

same procedure as Espinosa Lara & Rieutord (2013) and modify the mass, Keplerian angular

velocity, and the mass fraction of hydrogen in the core until we come across the desired model.

The final models, shown in Table 4.6, are chosen when the polar and equatorial radii, polar

and equatorial effective temperatures, and the luminosity are close to 1σ of the observational

data.

A first approach in finding a preferred ESTER model shows that it favors a 2.06 M� star

and is approximately 1.5σ lower than our value of the oblateness mass. In order to make

the polar and effective temperatures close to that of our images, we modified the angular

velocity such that it rotates faster than our imaging results. There are two major deviations
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Table 4.6. ESTER Results of Alderamin

Physical Parameters Observations Model

M? (M�) 2.39± 0.25 2.06
Xcore/Xenv 0.40
ωk 0.642± 0.037 0.710
Corresponding ωc 0.891± 0.018 0.926
Rp (R�) 2.199± 0.021 2.207
Re (R�) 2.652± 0.046 2.774
Teff,p (K) 8849± 300 8836
Teff,e (K) 6785± 360 7094
L? (L�) 24.2± 3.5 22.5
ve (km s−1) 266± 11 267
Pp (hours) 12.93
Pe (hours) 12.60

from the ESTER model and our imaging results. The first deviation is that the equatorial

radius is, similar to the mass, 2σ away from the observational results. However, this is a

result of a lower ωc from our observations. The angular velocity needed within ESTER is

higher compared to our results and was needed in order to balance the equatorial radius and

the effective temperature values. This second deviation within ESTER model resulted in

the angular velocity being 2σ larger than our results, but agree with the value from Zhao

et al. (2009) which may indicate that this is closer to the true value of ωc.

4.7 Discussion of Imaging Parameters

The observations using the upgraded MIRC-X instrument have shown that the imaging of

Alderamin is in partial agreement with previous works. However, there are a few caveats

that need to be addressed. The data were obtained during a time when MIRC-X was

currently going through various upgrades (in 2017 and 2018, see Anugu et al. 2020), thus

any observations were taken through an “at-risk” basis. The reduction pipeline has also not

been fully developed until very recently (Le Bouquin 2020) and potentially could lead to

some issues calibrating the raw visibilities. This will affect the squared visibilities, closure

phases, and triple amplitudes that are needed to accurately determine the true nature of

87



Alderamin. Therefore, a more precise re-examination of our Alderamin data is required as

the ωc highly affects multiple values.

Another important investigation for this work is to distinguish the nature between gravity

darkening and limb-darkening. Recent rapid rotator studies (i.e., Monnier et al. 2007; Zhao

et al. 2009; Che et al. 2011; Monnier et al. 2012) have applied atmospheric models to account

for the limb-darkening of rapid rotators and have been successful in producing their full

parameterization, however they do not provide a quantitative measure of the atmospheric

limb-darkening. As one of the goals of this work is to make distinct measurements of both

the limb-darkening coefficient (using the power-law) and the gravity darkening parameter,

we find for Alderamin that there is a tendency towards lower ωc compared to previous works

and a small amount of limb-darkening.

Lastly, if the rotation of a star is known or estimated, then the gravity darkening pa-

rameter can be estimated to first degree (from Equation 4.7). A further examination from

future imaging or surface temperature variation studies will determine if the Espinosa-Lara

Rieutord law provides a reliable estimate of the latitudinal temperature variation for stars.
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Chapter 5
FREE-SPACE BEAM PROPAGATION

Our final project in this manuscript slightly deviates from direct interferometric modeling

and imaging. As current interferometers have limited (u, v) coverage based on the geograph-

ical location of their telescopes, the sparse frequency coverage results in poorer imaging

quality. While an interferometric observer can stay on the same object all night, this may

not be ideal for objects that are highly variable (i.e., appearance changes temperature or

shape within the span of a few days). We describe the initial results of our optical test

bench project which aims to simulate open-air beam propagation. The motivation for this

section is to lay the groundwork for movable/mobile telescopes at any optical interferometer

in the world that can be used actively during a night and ultimately provide greater (u, v)

coverage, which will result in better imaging quality. We note that CHARA has since been

funded to implement such a system.

5.1 Imaging Simulation of a Movable Telescope

In order to find how effective a moving telescope would be to implement, we make simulations

of a seventh telescope at the CHARA Array using OITOOLS. We place this new telescope

approximately 370 meters southwest from the center of the Array creating a longer baseline

with CHARA’s E1 telescope at 579 meters. We simulate that this telescope is moving at a

rate of 1.41 meters per minute (2.36 cm per second) directly away from the S1 telescope on

a rail system that lets the telescope travel 33.94 meters.

In addition to placing a new telescope, we simulate a star that is 3 mas in diameter with

three spots on its surface with varying intensities. The first and largest spot has an intensity

difference of 25% compared to the photosphere, the second differs by 50%, and the third and

smallest spot differs by 75%. We use the power law for limb-darkening with a coefficient of

0.15. Our simulated observations of this spotted star assume the same right ascension and

declination as λ And, with four snapshot observations. Each snapshot integration lasts 21
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minutes with data taken every three minutes within a bracket. The start of the four brackets

is separated by exactly one hour in time. We present the (u, v) coverage of the current 6

telescope CHARA setup and the new 7 telescope CHARA setup in Figure 5.1. Having a

movable telescope allows for a faster sweep of the (u, v) plane for any baselines that are tied

to this new telescope, whereas the stationary telescope sample a smaller range of the (u, v)

plane.

Figure 5.1 Left: (u, v) coverage of CHARA’s current 6 telescope configuration with four
observing brackets. Right: (u, v) coverage of CHARA with a simulated 7th movable telescope
for two observing brackets.

We do 2D image reconstructions of the simulated spotted star with both the current and

new simulated CHARA telescope configurations. Our images are 128×128 pixels in size with

a pixel size of 0.046875 mas per pixel. Total variation is used as the regularization function

and we use l-curve method to find the optimum hyperparameter. The hyperparameters used

for the current and new simulated CHARA telescope configuration are 1× 106 and 2× 106,

respectively. We show the model and reconstructed images along with difference images in

Figure 5.2. The difference images show that by having a seventh movable telescope at a

larger distance, the smaller spots are starting to be more resolved. This is in contrast to the

current CHARA configuration where the smaller spot intensities tend to be more dispersed

across the photosphere.
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Figure 5.2 Top left: Model of a 3 mas star with three spots where the largest to smallest
spots have a 25%, 50%, and 75% difference in intensity compared to the photosphere. Top
middle: An image reconstruction of the 3 mas spotted star with CHARA’s current 6 telescope
configuration. Top right: An image reconstruction of the 3 mas spotted star with the new
simulated 7th movable telescope added to the current configuration. Bottom left: Difference
image between CHARA 6T and the model. Bottom right: Difference image between CHARA
7T and model.

5.2 Explanation of Instruments

Given our imaging simulations, we move to build a turbulence simulator. The ultimate goal

for the following setup is to simulate or replicate atmospheric conditions at a given observing

site so that a movable telescope can be placed at any given interferometer, with the potential

immediate application at the CHARA Array. For our specific setup, we use a pair of spatial

light modulators (SLMs) to mimic atmospheric turbulence and AO systems to correct for

the turbulence. Our SLMs from Meadowlark Optics have 1920 × 1152 elements with a range

of 0 to 2π in phase and are calibrated at 635 nm. The adaptive optics system we use consists
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of a deformable mirror (DM) and a Shack-Hartmann wavefront sensor (WFS). The DMs we

use from ALPAO, specifically the DM-97 (which has 97 actuators, with 11 actuators across

its diameter), has a tip/tilt peak-to-valley range of 60 µm, can achieve the best active flat

of 7 nm RMS, and has a 13.5 mm pupil diameter. The Shack-Hartmann WFS, also from

ALPAO, has a 50 × 50 lenslet array and can run up to 118 Hz.

5.3 Instrumental Setup

We start with a laser at 637 nm as our light source and expand it out into a collimated

beam. The collimated beam feeds two circular apertures producing two beams of a diameter

of 10 mm; this is the start of our two telescope interferometric system. The layout for each

leg of the interferometer is identical, so we will only describe one leg. We use a 4f system

with a magnification of 1 to image the entrance aperture onto an SLM with a magnification

of one. We use a half-wave plate right after our laser source to align the linearly polarized

light from the laser with the SLM’s polarization axis.

After the light is reflected from the SLM, the SLM is imaged onto the DM using another

4f system. Here the beam is expanded from 10 mm to 13 mm to match the 97 actuator DM’s

active area. After the reflection off of the DM, the beam on each leg is brought through a

50/50 beam splitter where half of the beam’s intensity is sent to the Shack-Hartmann WFS.

The other half of the intensity is directed to a beam splitter, where we combine the beams

from the two legs to form interference fringes. We show the layout of the beam path for our

system in Figure 5.3.

5.4 Phase Screens

This project’s ultimate goal is to simulate the propagation of light from an astronomical

source down to the entrance aperture of a telescope (where the light is corrected with an

AO system) before being diverted to travel through a horizontal column of turbulence to

a beam combiner facility. Here, the light is corrected with a second AO system before it
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Figure 5.3 We show a top-down view of our optical setup. The red lines reflect the beam
path propagated throughout our system until it is ultimately combined at the very end to
form fringes. The light path starts on the left (marked as LS) before being “split up” into
two beams to simulate two telescopes. We have 3 different 50/50 beam splitters in our setup.
The first two beam splitters are put in each leg such that part of the beam is used for the
wavefront sensor and the other half is reflected to make fringes on the backend (as indicated
by “Cam”). Abbreviations: LS - Laser source, SLM - spatial light modulator, EA - entrance
aperture, BS - beam splitter, DM - deformable mirror, Cam - Camera.

is combined with a beam from a second telescope to provide interference fringes. However,

in this manuscript, we consider the vertical and horizontal components of turbulence sepa-

rately. As a test for the experiment, we use Kolmogorov phase screens to simulate vertical

turbulence from Earth’s atmosphere. We specifically use the split-step beam propagation

method (Schmidt 2010) and model the distributed turbulence along the propagation path

using a number of discrete, infinitely thin, phase screens. The variation in the phase across

each screen represents the fluctuations induced by changes of the refractive index in the

atmosphere over the volume of space halfway to adjacent screens.

Our phase screen code takes the initial wavefront and propagates it through a vacuum

until it reaches a phase screen and repeats this process for the entire propagation path

until every phase screen has perturbed the wavefront. The propagation between the phase

screens gives rise to amplitude fluctuations in the wavefront due to diffraction. The level of
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turbulence in each phase screen is defined by the refractive index structure parameter (C2
n).

Since we are simulating vertical propagation, the C2
n will change at every phase screen. We

calculate C2
n using the Hufnagel-Valley approximation (Mohr et al. 2010) from Equation

1.17.

We select the values of the coefficients such that the C2
n profile simulates the conditions

at a typical observatory. We slightly modify the coefficients to obtain the desired Fried

parameter. At the end of the propagation process the wavefront is in the aperture plane of

the optical system and the values are wrapped between 0 and 2π. To unwrap the phase we

use the Goldstein branch cut phase unwrapping algorithm (Goldstein et al. 1988). For our

experiment, we replicate the conditions for Mount Wilson and CHARA’s 1-meter telescopes.

We additionally restrict ourselves to monochromatic light and simulate phases with a wave-

length of 637 nm, using a propagation distance of 30 kilometers, and assume that our source

is at zenith.

We apply different phases screens with Fried parameters of r0 ≈ 20 cm, or D/r0 ≈ 5

(where D here is the diameter of the aperture), to each of our respective SLMs for our

experiments (see Figure 5.4) in order to replicate good seeing conditions at CHARA. Based

on the approximate beam location on our phase screens, the original phase screens have its

D/r0 reduced to ≈4. The D/r0 calculations are based on the variance of the phase,

σ2 = 1.0299

(
D

r0

)5/3

. (5.1)

These phase screens can additionally be used as a rough estimation for horizontal turbu-

lence as well since the majority of the atmospheric turbulence comes from the ground layer

(more realistic phase screens for horizontal turbulence would be generated from a constant

C2
n profile). The beams in the vacuum tubes at CHARA have a diameter of 12.5 cm and

we, therefore, assume this beam size for our horizontal simulated turbulence. Nightly re-

ports from CHARA have shown that the lower bound of seeing conditions correspond to a
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range of r0 from ∼1-3 cm. Therefore, we use the same phase screens to simulate ground

seeing conditions that are r0 ≈ 3.2 cm based on the 12.5 cm beam size at CHARA that is

propagated through their vacuum pipes at a 1742 meter elevation.

Figure 5.4 Each phase was loaded on each SLM to ensure we are sampling different indepen-
dent turbulence. Top: Two phase screens that were generated for D/r0 ≈ 4 for each SLM.
Bottom: An example of one of the re-scaled phase screens. This specific phase screen has a
D/r0 ≈ 6.25 or r0 ≈ 2 cm.

Using one of our original phase screens of D/r0 ≈ 4, we scale the corresponding phases

(using Equation 5.1) such that the area where the circular beam located on the SLM reflects

the desired turbulence conditions. The pupil image is approximately 900 pixels in height

and length on the SLM. We obtain seven new phase screens for horizontal turbulence using

a 12.5 cm beam size and solve such that r0 ≈ 0.5, 1, 2, 3, 5, 6, and 7 cm.

5.5 Looking at the PSF

A first check that our simulator is working is provided by looking at the point spread functions

(PSFs) generated in each leg for a flat wavefront, a perturbed wavefront, and a perturbed
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wavefront corrected with AO. For this experiment, we only take PSF measurements for one

leg with varying phase and leave the second leg unperturbed for this test.

The DM in our experiment corrects for any perturbations of the beam caused by the

SLM. Our procedure starts by having a flat SLM (flat to λ/6), closing the AO loop, and

recording the PSF. This determines the best possible PSF we can expect from our system.

The RMS wavefront errors recorded on the WFSs are 20 nm. Then, we open the AO loop,

insert the r0 ≈ 0.5-7cm phase screens on the SLMs, and record the resulting PSFs. We find

that RMS decreases down to approximately 20 nm in all cases. We show the images of our

tests in Figure 5.5.

Our calculations of Strehl ratios are calculated by taking a flat SLM, closing the AO

system, and comparing the resulting peak PSF value of our flat system to each wavefront

that is loaded onto the SLM. The exposure times for each observation are different and

therefore we scale the intensities of the images so that all images are on equal scales. The

values of the Strehl ratios are listed in Table 5.1. We find that there is an improvement upon

the PSF and the Strehl from visual inspection in Figure 5.5 and numerically from Table 5.1

down to a 3 cm wavefront. Phases with r0 of 2 cm or lower worsen the quality of the PSF

where it visually has the PSF start to disperse the light and the values of the Strehl ratio

decrease when closing the AO loop. This could be a result of the incoming wavefront from

the SLM containing too many phase tears in proximity with each other (i.e., the density

of phase tears in a given area is high; see Figure 5.4). Therefore, our WFS and DM-97

combination cannot deal with any wavefront that has high-density phase tears of 2 cm or

lower.

5.6 First Results of Fringes

When looking for the fringes we start with flat wavefronts on both SLMs (similar to the

PSF) and close the AO loop in both ends to get the best static wavefront for our fringe

experiments. To ensure we are looking at the center of the fringe packet, we first put a linear
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Figure 5.5 Here we show 18 different PSFs of from our experiment from one beam that is
used for testing our AO system. The intensity of each PSF is shown in raw counts and is
in a logarithmic scale. Top center: The PSF of a flat AO uncorrected wavefront (left) and
AO corrected wavefront (right). Each row contains two pairs of PSFs of different r0 with
the uncorrected wavefront being displayed and the corrected wavefront directly to its right.
First row with a set of four images: PSF of an uncorrected wavefront with r0 ≈ 7 cm (far
left), PSF of a corrected wavefront with r0 ≈ 7 cm (middle left), PSF of an uncorrected
wavefront with r0 ≈ 6 cm (middle right), PSF of a corrected wavefront with r0 ≈ 6 cm (far
right). The pattern is repeated for the following rows where the second row has PSFs of a
wavefront with r0 ≈ 5 & 4 cm, the third row has PSFs of a wavefront with r0 ≈ 3 & 2 cm,
the last row has PSFs of a wavefront with r0 ≈ 1 & 0.5 cm.
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Table 5.1. Strehl Ratio Results

r0 of Phase Exposure Time Peak Intensity AO System Strehl Ratio
(cm) (s) (Counts) Value

0 (Flat System) 1/19231 37312 off 0.018
0 (Flat System) 1/1000000 39552 on –

7 1/250000 27584 off 0.174
7 1/333333 55168 on 0.465
6 1/125000 32384 off 0.102
6 1/333333 39168 on 0.330
5 1/62500 36800 off 0.058
5 1/250000 33984 on 0.215
4 1/52632 39104 off 0.052
4 1/142857 44928 on 0.162
3 1/52632 24448 off 0.032
3 1/125000 38592 on 0.122
2 1/52632 28800 off 0.038
2 1/38462 35584 on 0.035
1 1/52632 18880 off 0.025
1 1/5714 25536 on 0.004

0.5 1/52632 23808 off 0.032
0.5 1/5714 15808 on 0.002

stage on the mirror on the first leg between the two beam splitters. We adjust the stage

accordingly until we can, by visual inspection, determine that we are observing the center

lobe. After we are convinced that our fringes are first lobe measurements (by measuring

the intensity variations of fringe contrasts), we follow the same procedure as in Section 5.5.

After measuring fringes with flat wavefronts, we load our phase screens from Figure 5.4 to

our SLMs and measure our perturbed fringes. We continue our procedure using the r0 ≈ 4

phase and close the AO loop in both legs.

From visual inspection, we find that our fringes are perturbed (bent) slightly given a

flat wavefront using our AO system but are only visually recognizable near the edge of the

beam. When we apply our D/r0 ≈ 4 phase screens on our SLMs, our fringes are hardly

recognizable even with AO correction. The AO correction unable to correct for the D/r0 ≈ 4

phase wrapped phase screens may be due to the wrapped phase screens producing variations

in the intensity near the phase tears. While this may not affect the PSF and the AO system
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Figure 5.6 The intensity of all of these images are shown in raw counts. Top center: Fringes
of a flat wavefront (i.e., no phase loaded on our SLM and a flat DM). Bottom left: Fringes
from an uncorrected wavefront of D/r0 ≈ 4 on each respective SLM. Bottom right: Fringes
from a corrected wavefront of D/r0 ≈ 4 on each respective SLM.

is working as expected in the image plane, the AO system we have as-is does not work well

in the pupil plane. We show the images of our fringes for these preliminary results in Figure

5.6.

5.7 Discussion

In order to see how how results compare with theoretical results, we use both the equa-

tion within Noll (1976) to find the variance of the phase and the Maréchal approximation

(Maréchal 1947) to calculate the Strehl ratio. The variance of the phase can be approximated

as

σ2 ≈ 0.2944J−
√

3/2

(
D

r0

)5/3

(5.2)
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where J is the number of modes that are corrected where this approximation is only valid

for J > 10 modes. The Maréchal approximation of the Strehl ratio can be found as

S ≈ exp
(
−σ2

)
(5.3)

where this approximation starts to break down at lower Strehl ratios (e.g., S < 0.3).

For our DM-97 system, we correct 80 modes after piston and therefore expect to get a

Strehl ratio of 0.87 given that we use a beam size of 12.5 cm and r0 = 2 cm. Any higher

r0 values, or calmer turbulence conditions, are higher than 0.87 and can be assumed to be

diffraction-limited since any Strehl ratio values above 0.8 are considered to be diffraction-

limited. The Strehl ratios for the r0 = 1 cm and 0.5 cm phase screens are 0.64 and 0.25,

respectively. Our results from Table 5.1 show that our experimental values of the Strehl

ratios are much lower than these expected theoretical values. We believe that these lower

experimental values are caused by two factors. Since the SLM is only flat by λ/6 and, at 637

nm, that leaves about 106 nm in error that the WFS needs to additionally correct, along

with any potentially small aberrations caused by the optics along the beam path.

However, we have a DM241 for future use within the experiment and should theoretically

be able to correct for r0 ≈ 1 cm since the corresponding Strehl ratio would be 0.82 even just

correcting up to the first 200 modes beyond piston. However, this new DM241 would not be

able to do obtain diffraction-limited results with r0 ≈ 0.5 cm phase screen but this may be

able to correct the worst of seeing conditions at CHARA. We make a note that any piston

errors within the phase can be corrected by changing the optical path difference (akin to

something similar to delay lines at an interferometer).
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Chapter 6
CONCLUSION AND FUTURE DIRECTION

6.1 Summary of Results

We produce a three-dimensional interferometric model-dependent imaging code with robust

capabilities to generate surface maps of spotted stars and Roche objects. We describe the

layout of our code and how we develop the geometry of the object and convert it to inter-

ferometric visibilities so that they can be directly compared to observational data. Then,

we discuss how we use the Nelder-Mead algorithm within the NLopt package to produce

errors that incorporate both systematic and statistical errors. Finally, we make use of the

OptimPack algorithm to produce surface maps of our objects.

We do interferometric modeling and imaging on λ And for the 2010 and 2011 epochs.

First, we use SIMTOI in order to find which model is most probable for finding the best

parameters. Then we use the parameters from SIMTOI and use them for imaging in ROTIR.

Using the parameters from the best SIMTOI model as a prior, we apply the bootstrap method

to get the final physical parameters for λ And. We find that our images from ROTIR fairly

agree with the images produced to the other image reconstruction code, SURFING, and our

physical parameters are also fairly consistent of previous works with the exception of the

inclination.

Once we produce static images of the primary star in the system, we test to see if we find

any evidence for differential rotation and detect the secondary companion. We start with

a simulation of differential rotation and compare those results to the 2011 interferometric

data set. Our results remain inconclusive as we cannot detect any sheer within the 2011

data set largely due to λ And being a slow rotator. In our search for the companion,

we do a grid search by fitting various models for the companion (i.e., varying the angular

radius of the secondary and flux ratio of the system). While the flux ratio was consistent

with the approximated value, the angular radius was largely inconsistent with our estimated
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calculation, therefore, concluding that we were unable to detect the secondary (Martinez

et al. 2021).

We apply the same modeling and imaging method from the λ And work to Alderamin.

Our imaging is fairly consistent compared to previous works, however, there are disagree-

ments with various physical parameters. The most notable discrepancy is the fraction of the

critical angular velocity, which we find a difference in ∼5% lower than that of Zhao et al.

(2009). In turn, our lower ωc yields a slightly higher oblateness mass than expected, which

is confirmed by our modeling with the theoretical radiative transfer model ESTER.

In addition to imaging Alderamin, we provide a new surface temperature distribution law,

which we call the Espinosa Lara-Rieutord law, and can be compared to the nearly century-

old von Zeipel law. As many studies are still reliant on the general von Zeipel law, we provide

an easier method to obtain a recommended gravity darkening parameter (original displayed

within Espinosa Lara & Rieutord 2011, but not explicitly shown as a complete expression).

We find that the Espinosa Lara-Rieutord law is in better agreement with observational data

than of a constant gravity darkening parameter β = 0.19.

Finally, we describe a multi-beam atmospheric turbulence simulator that can be used for

research in free-space beam propagation for interferometry. As the first test of our simulator,

we simulate atmospheric turbulence with D/r0 ≈ 25 to 1.8 (r0 ≈ 0.5 cm to 7 cm). The Strehl

ratios show that there is an improvement upon the PSF when turning on the AO system

down to around r0 ≈ 3 cm. The D/r0 ≈ 4 is the level of turbulence that we can expect both

in the vertical and horizontal propagation directions. We find that AO system is unable to

correct for phase wrapped phase screens (Martinez et al. 2020).

6.2 Looking into the Future of Imaging

Our ROTIR code is not just limited to interferometric imaging but is also capable of light-

curve inversion. Future work will plan on using the multi-band photometry in Parks et al.

(2021) and compare those resulting images with the interferometric images from this work.
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These plans also include using the photometric data as a bridge for the 2010 and 2011

interferometric epochs in order to detail how λ And is evolving over the course of a year.

There is currently work implementing additional numerical techniques to ROTIR (Abbott

et al. in prep) in order to improve light-curve inversion quality with the use of ADMM

(Chan et al. 2011). An additional goal of ROTIR is the eventual implementation of Doppler

imaging and Zeeman-Doppler imaging, since the ultimate goal of ROTIR is to have an all-

in-one imaging tool for the three major imaging techniques (light-curve inversion, Doppler

imaging, and interferometric imaging).

A second reduction of Alderamin data is warranted as the calibration routines from the

MIRC-X pipeline may not be fully completed (since it is still being refined during the writ-

ing of this manuscript). A new calibration could either confirm our re-parameterization

Alderamin or the parameterization of the previous imaging works. We have data for other

rapid rotators (see Appendix A) which can be used to further investigate the link between

the gravity darkening parameter and the fraction of the critical angular velocity. Future

imaging campaigns of rapid rotators can incorporate the beam combiners at both CHARA

and NPOI using the current MIRC-X and VISION instruments. Furthermore, contempo-

raneous data collection within different wavelength regimes (K-band and R-band) will soon

become possible as the MYSTIC (Monnier et al. 2018) and SPICA (Mourard et al. 2017;

Mourard et al. 2018) instruments will come online, and further upgrades to MIRC-X will

expand 6T observations to J-band.

Other studies, such as Zorec et al. (2017), have modified the Espinosa Lara-Rieutord law

in order to take into account surface differential rotation. Since our code takes in a solar-

like differential law, we plan to implement this newly modified law into ROTIR for rapidly

rotating stars. As our code is currently limited to spherical and Roche-shaped object imaging,

an implementation of other geometries is needed. However, this is only limited to systems

that have a direct model (e.g., Be stars, stars with disks) since our code is model-dependent.
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Our preliminary results look promising for free-space beam propagation. Even though

there is a possibility that the experiment may not work at simulating a moving telescope

because the true ground layer turbulence conditions are much worse than expected (i.e., our

system may not be able to correct turbulence from r0 ≈ 3 cm or lower). However, if we

find that we can eventually correct down to r0 ≈ 0.5 cm, then this experiment can be used

at CHARA (assuming that this is the worst ground turbulence at CHARA). Practically, if

this concept were taken to CHARA, other issues may arise. How would we accommodate

a return beam or the return signal from the WFS near the beam combining lab to the DM

at the telescope? Perhaps one suggestion would be to use a radio signal to send the DM

for wavefront corrections. Would we need to worry about amplitude variations at CHARA?

While it may seem that at short distances (a few meters) may not suffer from amplitude

variations, at larger distances there may be some amplitude variations or loss but it is

currently unknown at which distances this may start.

We note that the level of horizontal turbulence used in this work is optimistic as the

ground layer turbulence at the CHARA Array could be as low as r0 = 0.5 - 1 cm. Several

tests will need to follow this preliminary work. First, carefully re-imaging the pupil from

the SLM to the DM will need to be done in order to remove the circular ring pattern

on the background of our fringes. We have another set of SLMs and a set DM241s not

implemented in this experiment. To study higher levels of horizontal turbulence, we plan

to use the DM97-15 deformable mirrors and SLMs in combination with each other in a

woofer and tweeter manner. The DMs will be used for the high amplitude but low-spatial

frequency components of the wavefront phase, while the SLMs will be used for the high spatial

frequency, low amplitude components. We plan to simulate a wider range of horizontal phases

from r0 ≈ 7 cm down to 0.5 cm (D/r0 ≈ 1.8 - 25) with constant C2
n profiles and find the

limiting seeing conditions for when we can find stable fringes. We also plan to implement

the third leg, to simulate a three-telescope interferometer.
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Finally, to chart the possible degradation of seeing conditions at Mount Wilson (Teare

et al. 2000), an investigation of site conditions (by taking measurements at CHARA to

investigate the ground layer seeing conditions) is warranted in order more accurately simulate

seeing conditions within the lab simulator. Future experiments could include work similar

to those done by Gibson (Gibson & Hammel 2014) to calculate the C2
n profile of the ground

layer where our horizontal beam propagation will occur.
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Appendix A
FULL MIRC-X/CHARA OBSERVATION LOG
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Table A.1. CHARA Array observations from 2017 to 2020

Object UT date Baselines Mode Calibrators Notes

− 2017 Oct 25 (1)
Caph 2017 Oct 26 W1-S1-S2-E1-E2-W2 H-PRISM 7 And, ζ Cas

Cursa (β Eri) 2017 Oct 26 W1-S1-S2-E1-E2-W2 H-PRISM HD 19994, HD 33256
28 Mon 2017 Oct 26 W1-S1-S2-E1-E2-W2 H-PRISM HD 55185
Caph 2017 Oct 27 W1-S1-S2-E1-E2-W2 H-PRISM 7 And, ζ Cas
Cursa 2017 Oct 27 W1-S1-S2-E1-E2-W2 H-PRISM HD 25490, HD 33256
Caph 2017 Oct 28 W1-S1-S2-E1-E2-W2 H-PRISM 7 And, θ Cas
Cursa 2017 Oct 28 W1-S1-S2-E1-E2-W2 H-PRISM HD 25490, HD 33256

28 Mon 2017 Oct 28 W1-S1-S2-E1-E2-W2 H-PRISM HD 55185
− 2018 Mar 26 (2)
− 2018 Mar 27 (2,3)

Rasalhague 2018 Mar 28 W1-S1-S2-W2 H-PRISM γ Ser (4)
Zosma (δ Leo) 2018 Mar 29 W1-S1-S2-E1-E2-W2 H-PRISM η Leo, β Com (5)

31 Com 2018 Mar 29 W1-S1-S2-E1-E2-W2 H-PRISM β Com, HD 119035 (5)
Rasalhague 2018 Mar 29 W1-S1-S2-W2 H-PRISM γ Ser, HD 173667 (5)

− 2018 May 25 (2)
− 2018 May 26 (2)
− 2018 May 27 (2,3)

Caph 2018 Sep 21 E1-W2-W1-S2-E2 H-PRISM ζ Cas, θ Cas (4)
Cursa 2018 Sep 21 E1-W2-W1-S2-S1-E2 H-PRISM HD 25490, HD 50281 (4)
Caph 2018 Sep 22 E1-W2-W1-S2-E2 H-PRISM ζ Cas, θ Cas (5)
Cursa 2018 Sep 22 E1-W2-W1-S2-S1-E2 H-PRISM HD 22713, HD 33256, HD 50281 (4)
− 2018 Oct 03 (2,6)
− 2018 Oct 04 (2,6)
− 2018 Oct 05 (2,7)

Caph 2018 Nov 03 E1-W2-W1-S1-E2 H-PRISM 7 And (7)
Caph 2018 Nov 04 E1-W2-W1-S1-E2 H-PRISM 7 And, ζ Cas (7)

Alderamin 2018 Nov 04 E1-W2-W1-E2 H-PRISM HD 210855, 16 Cep (7)
Cursa 2018 Nov 04 E1-W2-W1-S1-E2 H-PRISM HD 25621, HD 33256 (7)

28 Mon 2018 Nov 04 E1-W2-W1-S1-E2 H-PRISM HD 55185, HD 77250 (7)
Caph 2018 Nov 05 E1-W2-W1-S1-E2 H-PRISM 7 And, ζ Cas (7)

Alderamin 2018 Nov 05 E1-W2-W1-E2 H-PRISM HD 210855, 16 Cep (7)
Cursa 2018 Nov 05 E1-W2-W1-S1-E2 H-PRISM HD 33256 (7)
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Table A.1 (cont’d)

Object UT date Baselines Mode Calibrators Notes

Alderamin 2018 Nov 06a E1-W2-W1-E2 H-PRISM HD 210855, 16 Cep (5)
Cursa 2018 Nov 06a E1-W2-W1-S1-E2 H-PRISM HD 25621, HD 33256

28 Mon 2018 Nov 06a E1-W2-W1-S1-E2 H-PRISM HD 55185, HD 77250
Caph 2018 Nov 07a E1-W2-W1-S1-E2 H-PRISM 7 And, ζ Cas, θ Cas

Alderamin 2018 Nov 07a E1-W2-W1-E2 H-PRISM HD 210855, 16 Cep
Cursa 2018 Nov 07a E1-W2-W1-S1-E2 H-PRISM HD 25621, HD 33256

28 Mon 2018 Nov 07a E1-W2-W1-S1-E2 H-PRISM HD 55185, HD 77250
Zosma 2019 Apr 02 E1-W2-W1-S2-S1-E2 H-GRISM HD 97633 (7,8)
− 2019 Apr 03 (2,7)
− 2019 Apr 04 (2,7)
− 2019 Apr 05 (2,6,7)
− 2019 Apr 06 (2,6,7)
− 2019 May 16 (6,7)
− 2019 May 17 (6,7)

Altair 2019 May 18 E1-W2-W1-S2-S1 H-GRISM 31 Aql, HD 194937 (2,3)
− 2019 May 19 (6,7)
− 2019 May 20 (2,6,7)
− 2019 May 21 (2,7)
− 2019 May 22 (2,3)

Caph 2019 Aug 09 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas
Alderamin 2019 Aug 09 E1-W2-W1-E2 H-GRISM 16 Cep

Altair 2019 Aug 10 E1-W2-W1-S2-S1-E2 H-GRISM 31 Aql, HD 185018 (5)
Alderamin 2019 Aug 10 E1-W2-W1-S2-E2 H-GRISM HD 195820, 16 Cep, HD 210855

Caph 2019 Aug 10 E1-W2-W1-S2-E2 H-GRISM ζ Cas, θ Cas
Altair 2019 Aug 11 E1-W2-W1-S2-S1-E2 H-GRISM 31 Aql, HD 185018, HD 194937

Alderamin 2019 Aug 11 E1-W2-W1-S2-E2 H-GRISM 16 Cep, HD 210855
Caph 2019 Aug 11 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas
Caph 2019 Aug 12 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas

Alderamin 2019 Aug 12 E1-W2-W1-E2 H-GRISM 16 Cep, HD 210855
− 2019 Nov 17 (3)

28 Mon 2019 Nov 19 E1-W2-W1-S2-E2 H-GRISM HD 55185, HD 77250
− 2020 Mar 11 (6,7)
− 2020 Mar 12 (2)
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Table A.1 (cont’d)

Object UT date Baselines Mode Calibrators Notes

− 2020 Mar 14 (6,7)
− 2020 Mar 15 (6,7)
− 2020 Mar 16 (6,7)
− 2020 Mar 17 (6,7,8)
− 2020 Mar 18 (8)
− 2020 Mar 19 (8)
− 2020 May 01 (9)
− 2020 May 02 (9)
− 2020 May 03 (9)
− 2020 Jun 01 (7)

Vega 2020 Jun 02 E1-W2-W1-E2 H-GRISM HD 168322, HD 167304, HD 182694 (7)
− 2020 Jun 07 (2,3)
− 2020 Jun 08 (3)

Alderamin 2020 Aug 02 E1-W2-W1-S2-E2 H-GRISM HD 195820, 16 Cep, HD 210855
Caph 2020 Aug 02 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas
− 2020 Aug 03 (10)

Alderamin 2020 Aug 04 E1-W2-W1-S2-E2 H-GRISM ι Cyg, HD 195820, 16 Cep (10)
Caph 2020 Aug 04 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas (10)
Vega 2020 Aug 05 E1-W2-W1-S2-S1-E2 H-GRISM HD 168322, HD 182694
Caph 2020 Aug 05 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas
Vega 2020 Aug 06 E1-W2-W1-S2-S1-E2 H-GRISM HD 168322, HD 182694
Caph 2020 Aug 06 E1-W2-W1-S2-S1-E2 H-GRISM 7 And, ζ Cas, θ Cas (4)
− 2020 Sep 08 (1)
− 2020 Sep 09 (1)
− 2020 Sep 10 (1)

aThis time was given in addition to the scheduled observing time during CHARA observing engineering time.

Note. — We note that observations were hindered by the following: (1) forest fires near the CHARA Array; (2)
high humidity; (3) high winds (jet stream); (4) poor seeing of r0 ≤ 7 cm; (5) tech issues with MIRC-X; (6) rain; (7)
clouds; (8) snow/hail; (9) a global pandemic; and (10) ash/winds. The PRISM mode used in our observations has a
spectral resolution of R = 50 while the GRISM mode has a spectral resolution of R = 190. The baselines are listed
in their respective beam order for each observing night.
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Appendix B
EXTRA IMAGES AND PLOTS

Figure B.1 We show the (u, v) coverage for both λ And epochs (in 2010 and 2011). The plot
on the left shows the 2010 epoch with 4T observations and the plot on the right shows the
2011 epoch using a 6T arrangement.

Figure B.2 We show the (u, v) coverage for Alderamin for the 2019 epoch using a 5T ar-
rangement.
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Figure B.3 We show the triple amplitudes for both λ And epochs (in 2010 and 2011). The
plot on the top shows the 2010 epoch with 4T observations and the plot on the bottom shows
the 2011 epoch using a 6T arrangement.
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Figure B.4 We show the triple amplitudes of the Alderamin data taken in 2019 using a 5T
arrangement.
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Figure B.5 Top: The squared visibilities of a simulated spotted star with CHARA’s current
6T configuration. Bottom: The squared visibilies of a simulated spotted star with a potential
active movable 7th telescope added to the current CHARA 6T configuration.
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Figure B.6 Top: The closure phases of a simulated spotted star with CHARA’s current 6T
configuration. Bottom: The closure phases of a simulated spotted star with a potential
active movable 7th telescope added to the current CHARA 6T configuration.

125


	Exploring Interferometric Realms: Modeling and Imaging of Stars, and Optical Test Bench Simulations
	Recommended Citation

	List of Tables
	List of Figures
	List of Abbreviations
	INTRODUCTION
	The Beginnings of Interferometry
	The First Experiments Obtaining Interference Patterns
	The Diffraction Limit of Telescopes and Interferometers
	Theory of Interferometry
	Modern Observables in Interferometry

	Interferometric Modeling and Imaging
	Interferometric Modeling
	Image Reconstruction

	RS Canum Venaticorum Variables
	Starspot Properties
	Imaging of RS CVn Variables
	The RS CVn Variable lambda Andromedae

	Rapidly Rotating Stars
	Historical Spectroscopic and Interferometric Observations
	Alderamin

	The Future of Interferometry
	Summary of Projects

	3D INTERFEROMETRIC MODELING AND IMAGING WITH ROTIR
	Geometrical Setup
	Making Oblate Spheroids
	Roche Binaries

	Differential Rotation Option
	Going from a 3D Geometry to a Visibility
	Temperature Priors and Image Optimization

	THE TEST CASE, LAMBDA ANDROMEDAE
	Using Archival Data from the CHARA Array
	Data Reduction

	Modeling lambda Andromedae with SIMTOI
	Modeling Results

	Applying ROTIR to lambda Andromedae
	A First Look at Imaging
	Refinement of Physical Parameters
	Images of lambda Andromedae

	Comparisons to Previous Work
	SURFING vs ROTIR Imaging
	Inclination Disagreement

	Beyond Solid Rotation Imaging
	Simulating Differential Rotation
	Testing Differential Rotation on lambda Andromedae

	Imaging Beyond the Primary
	Updated Orbital Parameters and Secondary Parameters
	The Search for the Secondary

	Discussion of Imaging Results

	RAPID ROTATORS
	Target Selection
	Observations, Data Reduction, and Calibration
	SIMTOI Modeling of Alderamin
	Applying ROTIR to Alderamin
	Alderamin Imaging
	Imaging Analysis

	Comparing Observations to Gravity Darkening Models
	ESTER Modeling
	Discussion of Imaging Parameters

	FREE-SPACE BEAM PROPAGATION
	Imaging Simulation of a Movable Telescope
	Explanation of Instruments
	Instrumental Setup
	Phase Screens
	Looking at the PSF
	First Results of Fringes
	Discussion

	CONCLUSION AND FUTURE DIRECTION
	Summary of Results
	Looking into the Future of Imaging

	REFERENCES
	FULL MIRC-X/CHARA OBSERVATION LOG
	EXTRA IMAGES AND PLOTS

