

3.1 What did ancient civilizations achieve in astronomy?

- Daily timekeeping
- Tracking the seasons and calendarMonitoring lunar cycles
- Monitoring planets and stars
- Predicting eclipses
- Navigation

Object	Name	English	French	Spanish
Sun	Sun	Sunday	dimanche	domingo
Moon	Moon	Monday	lundi	lunes
Mars	Tiw	Tuesday	mardi	martes
Mercury	Woden	Wednesday	mercredi	miércoles
Jupiter	Thor	Thursday	jeudi	jueves
Venus	Fria	Friday	vendredi	viernes
Saturn	Saturn	Saturday	samedi	sábado

Macchu Pichu, Peru: Structures aligned with solstices.

3.2 Ancient Greek Science

- Greeks were the first people known to make *models* of nature.
- They tried to explain patterns in nature without resorting to myth or the supernatural.

Ptolemy

The most sophisticated geocentric model was that of Ptolemy (A.D. 100-170) the **Ptolemaic model:**

- Sufficiently accurate to remain in use for 1,500 years.
- Arabic translation of Ptolemy's work named *Almagest* ("the greatest compilation")

Tycho Brahe (1546-1601)

• Compiled the most accurate (one arcminute) naked eye measurements ever made of planetary positions.

• Still could not detect stellar parallax, and thus still thought Earth must be at center of solar system (but recognized that other planets go around Sun)

• Hired Kepler, who used Tycho's observations to discover the truth about planetary motion.

Johannes Kepler (1571-1630) • Kepler first tried to match Tycho's observations with circular orbits

• But an 8-arcminute discrepancy led him eventually to ellipses...

"If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy."

Thought Question:

An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun?

- A. 4 years
- B. 8 years
- C. 16 years
- D. 64 years

Hint: Remember that $p^2 = a^3$

An asteroid orbits the Sun at an average distance a = 4 AU. How long does it take to orbit the Sun? A. 4 years B. 8 years C. 16 years D. 64 years

We need to find *p* so that $p^2 = a^3$ Since a = 4, $a^3 = 4^3 = 64$ Therefore p = 8, $p^2 = 8^2 = 64$

Overcoming the first objection (nature of motion):

Galileo's experiments showed that objects in air would stay with a moving Earth.

Aristotle thought that all objects naturally come to rest.
Galileo showed that objects will stay in motion unless a force acts to slow them down (Newton's first law of motion).

Overcoming the second objection (heavenly perfection):

- Tycho's observations of comet and supernova already challenged this idea.
- Using his telescope, Galileo saw:
 - Sunspots on Sun ("imperfections")
 - Mountains and valleys on the Moon (proving it is not a perfect sphere)

Overcoming the third objection (parallax):

• Tycho *thought* he had measured stellar distances, so lack of parallax seemed to rule out an orbiting Earth.

- Galileo showed stars must be much farther than Tycho thought — in part by using his telescope to see the Milky Way is countless individual stars.
- ✓ If stars were much farther away, then lack of detectable parallax was no longer so troubling.

Aine 2.8.7 0 .. **0 0 ** 3.00 0 * * 3.4 *0 . 4.1 *0 + 1 **0 * 8.2 13. + + + 40. .0 0 12. H.4

Galileo also saw four moons orbiting Jupiter, proving that not all objects orbit the Earth

What have we learned?

- How did Copernicus, Tycho and Kepler challenge the Earth-centered idea?
 - Copernicus created a sun-centered model; Tycho provided the data needed to improve this model; Kepler found a model that fit Tycho's data
- What are Kepler's three laws of planetary motion?
 - 1. The orbit of each planet is an ellipse with the Sun at one focus
 - 2. As a planet moves around its orbit it sweeps our equal areas in equal times
 - 3. More distant planets orbit the Sun at slower average speeds: $p^2 = a^3$

What have we learned?

- What was Galileo's role in solidifying the Copernican revolution?
 - His experiments and observations overcame the remaining objections to the Sun-centered solar system

But science rarely proceeds in this idealized way. For example:

- Sometimes we start by "just looking" then coming up with possible explanations.
- Sometimes we follow our intuition rather than a particular line of evidence.

Hallmark of Science: #1

Modern science seeks explanations for observed phenomena that rely solely on natural causes.

(A scientific model cannot include divine intervention)

Hallmark of Science: #2

Science progresses through the creation and testing of models of nature that explain the observations as simply as possible.

(Simplicity = "Occam's razor")

Hallmark of Science: #3

A scientific model must make testable predictions about natural phenomena that would force us to revise or abandon the model if the predictions do not agree with observations.

What is a scientific theory?

- The word theory has a different meaning in science than in everyday life.
- In science, a theory is NOT the same as a hypothesis, rather:
- A scientific theory must:
 - Explain a wide variety of observations with a few simple principles, AND
 - —Must be supported by a large, compelling body of evidence.
 - -Must NOT have failed any crucial test of its validity.

Thought Question

Darwin's theory of evolution meets all the criteria of a scientific theory. This means:

- A. Scientific opinion is about evenly split as to whether evolution really happened.
- B. Scientific opinion runs about 90% in favor of the theory of evolution and about 10% opposed.
- C. After more than 100 years of testing, Darwin's theory stands stronger than ever, having successfully met every scientific challenge to its validity.
- D. There is no longer any doubt that the theory of evolution is absolutely true.

Next time:

 Chapter S1: Celestial Time Keeping and Navigation please read pages 84 – 103 in text.