Chapter 22
Birth of the Universe

Expansion of the Universe

- Hubble’s Law: all galaxies see all others moving away from them
- Whole universe is in state of expansion
- Current expansion implies whole universe much more compact in past
- Hubble Law gives idea of time since universe began: Big Bang theory

Age of the Universe

- Time since any galaxy left origin is \(\frac{d}{v} \) (distance/velocity)
- Velocity is given by Hubble’s law, \(v=Hd \)
- Age = \(\frac{d}{v} = \frac{d}{(Hd)} = \frac{1}{H} \)
- \(H = 70 \text{ km/s/Mpc} \) \((1 \text{ Mpc} = 10^6 \text{ pc}) \)
 \(= 70 \text{ km/s/(3.1x10^{19} \text{ km})} \) \(=2.3x10^{-18} \text{ /s} \)
- Age = \(\frac{1}{H} = 4.4x10^{17} \text{ s} = 14x10^{9} \text{ years} \)
 (compare to age of Earth \(4.5x10^{9} \text{ years} \))

Back to the Big Bang

The early Universe was both dense and hot.

Equivalent mass density of radiation \((E=mc^2) \) was much greater than matter density.

As the universe cooled, it went from being radiation-dominated to being matter-dominated.
New particles formed by collisions of photons (when photon energies exceeded particle equivalent energy): pair production/annihilation (creates particle & anti-particle)

Above: 2 gamma rays make an electron–positron pair, and vice versa.
Left: Tracks of electron and positron in a high-energy particle accelerator.

Pair production and annihilation processes started in equilibrium.
As temperature fell, photons lost energy and no longer created massive particles. Any particles that survived were “frozen out” (origin of matter).

Slight excess of regular matter over anti-matter.

Physics of Early Universe: Fundamental Forces

• Strong Force (holds nuclei together)
 – Exchange particle: gluons
• Electromagnetic Force (holds electrons in atoms)
 – Exchange particle: photons
• Weak force (mediates nuclear reactions)
 – Exchange particle: weak bosons
• Gravity (holds large-scale structures together)
 – Exchange particle: gravitons

forces become similar (unify) at higher temperatures

Fundamental Particles: based on mass, charge, spin

Half integer spin
Integer spin
Fermions
Bosons
Quarks
Electrons, neutrinos
Leptons
Examples: electrons, neutrinos
[weak force]

Protons and neutrons are made of quarks
• Up quark (u) has charge +2/3
• Down quark (d) has charge -1/3
Masses of quarks and Z, W bosons related to Higgs field and Higgs boson (CERN discovery 7/4/2012) [https://www.youtube.com/watch?v=ehHoOYqAT_U]
Particle Era:
Amounts of matter and antimatter nearly equal (1 extra proton for every 10^9 proton-antiproton pairs!)
First heavier (quarks) then lighter (leptons, WIMPs) particles form as Universe cools

Era of Nucleosynthesis:
Protons, neutrons begin to fuse (H, He) but larger nuclei broken by collisions

Era of Nuclei:
Most of He made by 3 minutes
Too hot for electrons and nuclei to combine

Era of Atoms:
Atoms form at age $\sim 380,000$ years
Background radiation released*
First stars formed

Era of Galaxies:
Galaxies form at age ~ 1 billion years
Summary

- The early universe was so hot and so dense that radiation was constantly producing particle-antiparticle pairs and vice versa.
- As the universe cooled, particle production stopped, leaving matter instead of antimatter.
- Fusion turned remaining neutrons into helium.
- Radiation traveled freely after formation of atoms.
- Stars formed from dense clouds.
- Galaxies formed from stars and gas.

Primary Evidence

1) Expansion of the Universe (Hubble’s Law).
2) Detection of the radiation from the Big Bang.
3) Abundances of helium and light elements.
4) Structure in the Universe.
Big Bang theory prediction: 75% H, 25% He (by mass)
Matches observations of nearly primordial gases

Structure in the Universe
Tiny ripples in cosmic background radiation found by
NASA Wilkinson Microwave Anisotropy Probe (map.gsfc.nasa.gov)
and the ESA Planck Space Telescope:
https://www.youtube.com/watch?v=Fn0FgOwyu0w
These structures provide the seeds for later development of
galaxies and clusters of galaxies.

Ancient Structures in the Universe
WMAP ripples of +/- 0.01% (25 arcmin resolution).
Inset: Cosmic Background Imager (9 arcmin resolution).
Structures seen with size of about 1 degree.

Overall (spacetime) geometry of the universe is closely related
to total density of matter & energy

Observed and predicted angular scale clumping for
critical density (flat Universe) are excellent match.

Summary: Cosmic Microwave Background
• Universe is about 13.8 billion years old
• First stars appeared 200 million years after Big Bang
• CMB is from 379,000 years after Big Bang
• Universe contains
 4% Atoms, 23% Cold Dark Matter, 73% Dark Energy
 (more on this next time)
The Universe As An 80-year-old Person...

<table>
<thead>
<tr>
<th>Time Since the Big Bang (Years)</th>
<th>The Universe</th>
<th>Human Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>379,000</td>
<td>Time when the pattern of CMB light was set. Universe was cool enough for atoms to form.</td>
<td>Baby just 19 hours old.</td>
</tr>
<tr>
<td>200 million</td>
<td>The matter in the Universe has condensed by gravity sufficiently to make the first stars.</td>
<td>Baby of 13 months (first steps).</td>
</tr>
<tr>
<td>1 billion</td>
<td>The first galaxies began to form.</td>
<td>Child just under six years old.</td>
</tr>
<tr>
<td>4.6 billion</td>
<td>Sun and Earth form.</td>
<td>Adult at 53.</td>
</tr>
<tr>
<td>13.7 billion</td>
<td>The present day: Universe of stars and galaxies.</td>
<td>Adult at 80.</td>
</tr>
</tbody>
</table>