

Expansion of the Universe

- Hubble's Law: all galaxies see all others moving away from them
- Whole universe is in state of expansion
- Current expansion implies whole universe much more compact in past
- Hubble Law gives idea of time since universe began: Big Bang theory

2

Age of the Universe • Time since any galaxy left origin is d/v (distance/velocity) • Velocity is given by Hubble's law, v=Hd • Age = d/v = d/ (Hd) = 1/ H • H = 70 km/s / Mpc (1 Mpc = 10⁶ pc)

= 70 km/s / (3.1x10¹⁹ km) =2.3x10⁻¹⁸/s
Age = 1/H = 4.4x10¹⁷ s = 14x10⁹ years (compare to age of Earth 4.5x10⁹ years)

3

The universe began as a hot, dense singularity that has expanded and cooled over time.

4

1

New particles formed by collisions of photons (when photon energies exceeded particle equivalent energy): pair production/annihilation

(creates particle & anti-particle)

Above: 2 gamma rays make an electron-positron pair,

Left: Tracks of electron and positron in a high-energy particle accelerator.

8

Physics of Early Universe: **Fundamental Forces**

- Strong Force (holds nuclei together) - Exchange particle: gluons
- Electromagnetic Force (holds electrons in atoms) - Exchange particle: photons
- Weak force (mediates nuclear reactions) ٠ - Exchange particle: weak bosons
- Gravity (holds large-scale structures together) - Exchange particle: gravitons

9

Summary

- The early universe was so hot and so dense that radiation was constantly producing particle-antiparticle pairs and vice versa
- As the universe cooled, particle production stopped, leaving matter instead of antimatter
- Fusion turned remaining neutrons into helium
- Radiation traveled freely after formation of atoms
- Stars formed from dense clouds
- Galaxies formed from stars and gas

The cosmic microwave background – the radiation left over from the Big Bang – was detected by Penzias & Wilson in 1965

27

26

32

34

Summary: Cosmic Microwave Background

- Universe is about 13.8 billion years old
- First stars appeared 200 million years after Big Bang
- CMB is from 379,000 years after Big Bang
- Universe contains 4% Atoms, 23% Cold Dark Matter, 73% Dark Energy (more on this next time)

The Univ	/erse As An 80-year-old Person	
Time Since the Big Bang	The Universe	Human Equivalent
379,000 years	Time when the pattern of CMB light was set. Universe was cool enough for atoms to form.	Baby just 19 hours old.
200 million years	The matter in the Universe has condensed by gravity sufficiently to make the first stars.	Baby of 13 months (first steps).
1 billion years	The first galaxies began to form.	Child just under six years old.
9.1 billion years	Sun and Earth form.	Adult at 53.
13.7 billion years	The present day Universe of stars and galaxies.	Adult at 80.