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Introduction

 Where do H fusing stars end and brown dwarfs
begin?
e Temperature dependent on mass and age

e Old low-mass star and young brown dwarf can be
same temperature

e Spectroscopically very similar

e These spectral types can contain both stars and
brown dwarfs

e Molecular spectral features
e At cooler temperatures even grains form
e Good diagnostics to study physical effects
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M-Type Classification

Temperature Classification

Historically done in optical
* Not a lot IR technology in early spectroscopy days

TiO main subtype indicator

Original MK system only classified early M-types
e Kuiper (1942) and Joy (1947) systems for later

types
e Systems didn’t always agree

Later revisions (Boeshaar 1976) used 5736A VO to
5759A TiO ratio and 5530A CaOH for mid M-types
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M-Type Classification

Temperature Classification

* Entire M-Dwarf classification done using red-NIR
(Kirkpatrick et al. 1991)

e Created a set of standard stars for each subtype

e Classification of future stars done relative to
standards

e | east square minimization to standard
* Many line ratio options

* Full NIR standards not yet defined
e Same species in optical and NIR
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M-Type Classification

Gravity/Luminosity Classification

 Realized that M-type had two sequences (Dwarfs &
Giants)

* Density sensitive lines separated them (Na |, hydrides)

* The appearance of these spectral features is due to
differing surface gravities

e early-Dwarf log(g) ~ 4.5, early-Giant log(g) ~ 1.0

e Similar effect for brown dwarfs

* Young brown dwarfs are hot like older M-stars
 Contract as they age
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M-Type Classification

Metallicity Classification

Low-metal stars are called subdwarfs
e d = dwarf, sd = subdwarf, esd = extreme subdwarf

Varying abundance of metals will change the relative
abundance of different molecules

Lower metal abundance means less to metal-metal
molecules compared to metal-hydride molecules

e e.X. 11O (metal-metal), CaH (metal-hydride)

For two stars with same TiO strength
* The star with stronger CaH is more metal-poor
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M-Type Classification

Metallicity Classification

* M-type sequence standards for subdwarf and
extreme subdwarfs not yet defined

e Classified relative to normal dwarfs (Gizis 1997)

e Ratios of 6400 and 6950A CaH to 7150A TiO

 Abundances calculated using fits with
atmospheric models

* In NIR subdwarf and extreme subdwarf spectra are
flattened

e Collision-induced absorption (CIA) of H»
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L-Type Classification

Temperature Classification

Early L-Dwarf spectra:

 Neutral alkalis (Na, K), hydrides (FeH, CaOH), and
oxides (weak TiO, VO)

Mid L-Dwarf spectra:

e Stronger alkali resonance lines and hydrides, very weak
oxides

Late L-Dwarf spectra:
e Strong alkali and H20, weakening hydride

Optical standards set up by (Kirkpatrick et al 1999)
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L-Type Classification

Metallicity Classification

Some unusual L-type spectral features explained by
metallicity

 Cooler equivalents to M-type subdwarfs
L subdwarfs

L subtype based on closest match to normal L-Dwarf
standards

L-subdwarfs have stronger hydride bands and alkali lines

No subdwarf standards have been set yet
* Few number of known L-subdwarfs
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L-Type Classification

Metallicity Classification

Near Infrared

e |n 1-2.5 micron range

e |Increased FeH

e H>0O band features in normal L-Dwarf
e Suppressed in subdwarfs

e CIAH:

e Subdwarfs have bluer colors in NIR
e Relative to normal dwarfs
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Effective Temperature

|s temperature most important factor for spectral
appearance?

Measuring Radi

e Early to Mid M-type radii measured directly via binary
system and interferometry

e | ate M-type and all L-type too dim and no eclipsing
companions

* Interior models used to estimate L-type

Measuring Luminosity

e Need distance and apparent magnitude (astrometry
and photometry

Effective temperature from R and L
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Chemistry of Atmosphere

e State a species is in dependent on Temperature
e |lons -> Neutral -> Molecules -> Condensates

e Atmospheric models without dust don’t work on late M
and L

e \Why does TiO and VO disappear in L-Dwarfs
e TiO, VO condense down to dust
e VO never completely disappears

e Hydrides (FeH & CrH) in L-type strength peak and then
decrease at same subtypes

e Starting at mid-L CO combines H2 to make H20
e Water bands strengthen
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Stars or Brown Dwarfs

* For object with too low mass, electron degeneracy is
reached in core before T is high enough for H fusion

e Brown Dwarfs

* Evolutionary models used to see change in Tesf VS Age

e Find that Mid-M to Mid-L contain stars and brown
dwarfs

25



4000

1000

' ' I ' 1 ' ' | r;“\ —
800
..... K. 4
soo |
400
i H-fusing stars

200

150

130 M

Old H-fusing stars &
Very Ypung Brown Dwarfs

.0B0
Older H-fusing stars &
Brown Dwarfs

~ \ N N\ ~ 072
~ ~
\ \ h_\
N ~ N \ ~
\ “~ N \ ~
AN ~ ~ ~
~ ~ ~ -
N\ ~ ~ ~ N e emmeaaa -
~ ~ ~ ~ ~
~ ~ ~ ~ ~ T
~ ~ ~ ~ ~
~ ~ ~ ~
~ ~
~ ~ ~
~ ~
~ ~ N ~ ~ -
~ ~ -~ ~ ~ -~ % -
~ -~ -~ ~ ~ -~
~ ~ -~ ~ ~ ~
\\ o o ~ ~ ~ 0\
M -~ ~ ' . -t
Gog ™ ~%5~ ~% %y B % " ~%
~ =~ -~ —~ -~ -~
~— ~— ~ -~ \l
1= l - Lo~ e | 1 — 1 — 1

Log Age (Gyr)

20



Stars or Brown Dwarfs

* For object with too low mass, electron degeneracy is
reached in core before T is high enough for H fusion

e Brown Dwarfs

* Evolutionary models used to see change in Tesf VS Age

e Find that Mid-M to Mid-L contain stars and brown
dwarfs

e Lithium depletion -> tests to see if H-fusion
* Problems:
* Fluxis low at Li resonance line
* Li molecules form at low T (1500K)
* low log(g) hides Li lines (young brown dwarfs)
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Space Density

e How many M and L-Dwarfs are around?

e Solar neighborhood (<8pc) population studies
* Good for spectral types <« M6 (parallax)
 Majority of later types too dim

e Parallax of few that are close

n(MO — M6) ~ 6.7%107% pc™> n(M7 — M9.5) ~4.9%107° pc=>
n(L0 — L8) ~ 3.8*% 107> pc~
n(T0 —T8) ~ 7.2*107° pc™>

e Fewer L-Dwarfs than M-Dwarfs or T-Dwarfs
e Brown dwarfs cool down fast & not a lot of stars
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Peculiar Objects

Dwarf Carbon Stars

e Carbon Dwarfs (dC)

 Low luminosity dwarf object near M-Dwarf sequence
e Large excess of carbon

e Mass transfer with evolved companion
e Theory requires low metallicity (high Z still found)

e >120 dC found

e Difficult to disentangle Carbon Giants
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Peculiar Objects

Flare Stars

e Star shows sudden burst in luminosity for short time

* Burst can exceed Lol
e | asts only for few seconds

* Burst results in presence of multiple emission lines
* Emission lines come from layers of atmosphere

* Magnetic field of star transfers energy to atmosphere
* Probability of flaring depends on Spectral-Type
e Peaks at M7-M8

* No flares after early-L
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Peculiar Objects

Pre-Main-Sequence Objects

e Objects are surrounded by dust (envelope/disk)
e Optical wavelengths blocked

e (Classified in 2-25 micron band

e Using alpha (flux) parameter a = d log(Al)
d log/

e 3 Classes
1. Embedded Protostars - Steeply rising continuum 0O<a<3
2. T Tauri - “Flat” spectra -2<ax<0

3. Weak-lined T Tauri - Falling spectra -3<a<-2
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Questions



