Astr 8000 – Problem Set #4 Due Thursday, April 25, 2019

1. Tabulate and plot the H β profile for collisional broadening using the nearest neighbor theory. Underhill & Waddell (1959) express the profile as a sum of Stark components:

$$S(\alpha) = \frac{1}{n^2 f} \sum_k \frac{F_k}{C_k} W\left(\frac{\alpha}{C_k}\right)$$

where n = 2 for H β , f = 0.11932125, W is the probability function from nearest neighbor theory (Mihalas eq. 9-87), and the sum is taken over 7 terms (below). Write a program to calculate $S(\alpha)$, and then compare your results with the profile from the Model Microfield Method of Stehlé & Hutcheon (1999, A&AS, 140, 93). I have placed a copy of their tabular data at http://www.astro.gsu.edu/~gies/Stehle_ba_ba04_profill1.dat. Find the appropriate block for $T_{\rm eff} = 20,000$ K and $N_e = 10^{15}$ cm⁻³. Column 1 lists α and column 2 gives $S(\alpha)$ (including Doppler broadening). Plot the results as: (1) log $S(\alpha)$ versus log α (like Mihalas Fig. 9-2), and (2) $I(\Delta\lambda)$ versus $\Delta\lambda$. [40]

k	C_k	F_k
1	0.00906869	0.01455833
2	0.01813738	0.08677904
3	0.02720607	0.06365699
4	0.03627476	0.03653854
5	0.04534345	0.03549186
6	0.05441214	0.00152244
7	0.06348083	0.00009515

2. Calculate residual absorption profiles using the Milne - Eddington model

$$R_{\nu} = (a\sqrt{3} + \frac{b}{1+\beta_{\nu}})/(a\sqrt{3} + b).$$

Adopt a simple linear source function, $S_{\nu} = B_{\nu} = \frac{3}{4}F_{\nu}(\tau + \frac{2}{3})$, to determine the constants *a* and *b*. Take the true absorption profile to be $\beta_{\nu} = \beta_{\circ}H(a, v)$ where H(a, v) is the Voigt function (use the IDL library routine VOIGT). Use $a = 10^{-3}$ and $\beta_{\circ} = 0.1, 1, 10, 100, 1000$, and 10000. Plot the results for v = 0 to 10. Measure the equivalent width of these profiles and plot a curve of growth (log *W* versus log β_{\circ}). [30]

3. Consider the curve of growth method to determine abundance (Gray Chap. 16). Use the equivalent width measurements for Fe I in the spectrum of α Cen A (Furenlid & Meylan 1990, ApJ, 350, 827; see http://www.astro.gsu.edu/~gies/ASTR8000/fmfe.dat), and convert the excitation energy χ in the last column from cm⁻¹ to eV. Then use the reference curve of growth in Gray Table 16.2 (copied below) to determine the abundance of iron in α Cen A. Use the graphical technique described on page 398 of Gray, i.e., for each measured line determine y = log(W_λ/λ) and x = log gf + log λ/λ₀ − log κ/κ₀ − θχ and then find the best fit shift in x to match the reference curve of growth to the full set of measurements. Notes: Assume an effective temperature T_{eff} = 5710 K, θ = 5040/T_{eff}, and a microturbulent velocity of ξ = 0 km s⁻¹, and use Fig. 8.5(a) (copied below) to make a linear fit of the variations in continuous opacity κ/κ₀ with wavelength in the expression for x. [30]

Table 16.2. Solar-model curves of growth for $\lambda 4500$.

(log W/λ for Fe I, $\chi = 0 \text{ eV}$, log $g_n f = 0$, ξ in km/s at the head of the columns.)									
10g 1	0	1	2	2					

$\log A$	0	1	2	3	5
-12.0	-6.66	-6.66	-6.66	-6.66	-6.66
-11.5	-6.17	-6.17	-6.17	-6.16	-6.15
-11.0	-5.71	-5.70	-5.68	-5.68	-5.67
-10.5	-5.33	-5.30	-5.25	-5.23	-5.20
-10.0	-5.07	-5.01	-4.92	-4.86	-4.79
-9.5	-4.93	-4.84	-4.73	-4.62	-4.50
-9.0	-4.82	-4.74	-4.60	-4.50	-4.34
-8.5	-4.71	-4.64	-4.52	-4.41	-4.24
-8.0	-4.58	-4.52	-4.42	-4.32	-4.17
-7.5	-4.39	-4.36	-4.30	-4.22	-4.09
-7.0	-4.17	-4.16	-4.12	-4.09	-3.99
-6.5	`-3.93	-3.92	-3.91	-3.90	-3.85
-6.0	-3.69	-3.68	-3.68	-3.67	-3.65
-5.5	-3.44	-3.44	-3.44	-3.43	-3.42

