SYLLABUS

ASTR 8000 – STELLAR ATMOSPHERES AND SPECTROSCOPY Spring 2019 – 4 Credit Hours – Computer #23054

Tuesday and Thursday, 10:00 – 11:50 am, 25 Park Place, Room 628

- Instructor: Douglas R. Gies, 606 25PP, 404-413-6021, gies@chara.gsu.edu
- Class Web Site: http://www.astro.gsu.edu/~gies/ASTR8000/
- Course Description:

This is a graduate level course that introduces the concepts surrounding our understanding of how light emerges from the outer layers of stars. Because most of our knowledge about stars comes from their emitted flux, the basic properties of stars are derived from an interpretation of starlight. This survey course will cover the interaction of light and matter, how radiative intensity changes through the outer gas layers of stars, mathematical and computational methods to predict the emitted spectrum, and basic applications of these methods to interpret the flux distributions and spectral line properties of observed stellar spectra.

• Learning Outcomes:

Students enrolled in this course will learn the basic concepts of radiative transfer, the properties of stellar spectra, and observational and computational tools to interpret spectra. Students will also gain a foundation in scientific programming through code development in IDL or Python to solve questions on the problem sets. Each student will gain expertise in one spectral classification category and will develop experience in oral delivery through a class presentation on the subject. The course work will prepare students to begin research in this and related areas.

• Textbooks:

Theory of Stellar Atmospheres, by I. Hubeny & D. Mihalas, 2015 (Princeton: Princeton University Press). A large book that provides the foundations; very useful if you can purchase or borrow a copy.

Stellar Spectral Classification, by R. O. Gray & C. J. Corbally, 2009

(Princeton: Princeton University Press). A book that we will use for a series of class presentations.

Radiative Transfer in Stellar Atmospheres, by R. J. Rutten, 2003

An excellent Web-based resource that emphasizes the solar atmosphere; see

http://www.staff.science.uu.nl/~rutte101/Radiative_Transfer.html

The Observation and Analysis of Stellar Photospheres, 3rd Edition, by D. F. Gray, 2005 (Cambridge: Cambridge University Press). A venerable book with emphasis on observational methods.

• Grades:

Presentation on spectral types	
Four problem sets	
Mid-term Exam	
Final Exam	
Each student will be assigned a chapter from	Gray & Corbally to summarize and
present to the class. The presentations should in	clude a short (few page) hand-out to
be distributed at the beginning of the class.	
I plan to use a plus/minus grading scheme (i.e.,	80 to 83 is B–, 84 to 86 is B, and 87
to 89 is $B+$, etc.).	
Students are expected to do their own work and	l to abide by the Policy on Academic
Honesty discussed in the GSU Code of Conduct:	
https://codeofconduct.gsu.edu/files/2018/10/201	$18_10_2_codeOfConduct.pdf$

• Meeting Schedule:

The projected schedule is given on the next page. Unexpected circumstances may require changes in the syllabus as the quarter progresses.

• Presentation Schedule:

Please select a date and topic from Gray & Corbally.

Date	Gray & Corbally Topic	Presenter Name
Jan 24	GC3. O Stars	
Jan 31	GC4. B Stars	
Feb 07	GC5. A Stars	
Feb 14	GC6. F Stars	
Feb 21	GC7. G and K Stars	
Mar 07	GC8. M giants	
Mar 14	GC9. M and L Dwarfs	
Mar 28	GC10. T and Y Dwarfs	
Apr 04	GC11. W-R and LBV Stars	
Apr 11	GC12. Stellar endpoints	

Date	Lecture Topic
Jan 15	Introduction
Jan 17	Stellar Properties
Jan 22	Radiation Field
Jan 24	Transfer Equation; hand out PS#1
Jan 29	Matter and Radiation in LTE
Jan 31	Absorption Cross Sections; (PS#1 due)
Feb 05	Continuum Absorption
Feb 07	Analytical Relations for Transfer Eqn.
Feb 12	Grey Atmosphere
Feb 14	Convective Transport; hand out PS#2
Feb 19	Line-blanketed, LTE Models
Feb 21	Kurucz ATLAS; (PS#2 due)
Feb 26	Non-LTE Atmospheres; hand out Mid-term Exam
Feb 28	Measurement of Stellar Continua; Mid-term Exam due
Mar 05	Extended Atmospheres of Cool Stars
Mar 07	Resources for Atmospheres
Mar 12 Mar 14	Hot Stars Stellar Winds and Mass Loss; hand out $PS#3$
Mar 19	Spring break - no class
Mar 21	Spring break - no class
Mar 26	Grating Spectrographs
Mar 28	Spectral Data Analysis; (PS#3 due)
Apr 02	Spectral Line Physics
Apr 04	Line Broadening
Apr 09	Line Broadening
Apr 11	Spectral Line Transfer; hand out PS#4
Apr 16	Curve of Growth
Apr 18	Chemical Abundances; (PS#4 due)
Apr 23	Rotational and Turbulent Line Broadening
Apr 25	Spectroscopic Binaries and Pulsating Stars
May 02	8:00 – 10:30 am Final Exam