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ABSTRACT

We present the first results of a multi-year program to map the orbits of M dwarf multiples within 25
parsecs. The observations were conducted primarily during 2019-2020 using speckle interferometry at
the Southern Astrophysical Research (SOAR) Telescope in Chile, using the High-Resolution Camera
mounted on the adaptive optics module (HRCam+SAM). The sample of nearby M dwarfs is drawn
from three sources: multiples from the RECONS long-term astrometric monitoring program at the
SMARTS 0.9 m, known multiples for which these new observations will enable or improve orbit fits,
and candidate multiples flagged by their astrometric fits in Gaia Data Release 2 (DR2). We surveyed
333 of our 338 M dwarfs via 830 speckle observations, detecting companions for 63% of the stars.
Most notably, this includes new companions for 76% in the subset selected from Gaia DR2. In all,
we report the first direct detections of 97 new stellar companions to the observed M dwarfs. Here we
present the properties of those detections, the limits of each non-detection, and five orbits with periods
0.67-29 yr already observed as part of this program. Companions detected have projected separations
of 07024-2"0 (0.25-66 AU) from their primaries and have Al < 5.0 mag. This multi-year campaign
will ultimately map complete orbits for nearby M dwarfs with periods up to 3 yr, and provide key
epochs to stretch orbital determinations for binaries to 30 yr.

Keywords: Astrometric binary stars (79), Astrometry (80), Binary stars (154), M stars (985), Speckle
interferometry (1552), Low mass stars (2050)

1. INTRODUCTION

Stars in binary and multiple star systems have been observed in many varieties of orbits, each the result of the stellar
formation and dynamical evolution processes that guided them through to the present day. Multiples may form from
fragmentation at overdensities in the collapsing molecular cloud (Pringle 1989), creating gravitationally bound stars
separated by thousands of AU (Offner et al. 2016; Lee et al. 2019; Kuffmeier et al. 2019), or may form later from the
fragmentation of the disk around a (single) protostar, generating stars separated by 50-200 AU (Bonnell & Bate 1994;
Kratter et al. 2010). Observers, however, have noted a wealth of systems with separations of <10 AU, indicating that
many of these multiples undergo significant dissipative processes to lose their angular momentum (Duchéne & Kraus
2013). As reviewed in Bate (2015) and Lee et al. (2020), such processes could involve close encounters with nearby
stellar neighbors or interactions with the circumstellar or circumbinary disk(s), such as accretion, which in turn is
affected by magnetic field interactions and metallicity (Moe et al. 2019).
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Clarifying the roles of these processes requires detailed numerical models and, above all, observed distributions of
the orbital parameters such as orbital period, semimajor axis, eccentricity, and mass ratio, that are affected by these
dissipative processes. For example, a distribution favoring high eccentricities suggests a thermal distribution of orbital
velocities produced by dominating dynamical interactions (Kroupa 2008), and has been observed for systems with
early-type primary stars (Moe & Di Stefano 2017). Or, as a broader example, if the presence of a disk generally
dampens eccentricity, then any trends of eccentricity with semimajor axis could be linked to disk size scales. Key
information will come especially from the inclusion of higher-order multiples such as triples and quadruples, rather
than binaries alone, as those systems carry additional evidence through their ratios of masses and orbital periods and
the mutual inclinations of their orbits.

Previous efforts establishing orbital element distributions for main sequence multiples have focused on specific
spectral type or mass regimes. For example, binaries of solar-type stars of types FGK were the focus of Duquennoy
& Mayor (1991) and a succeeding effort by Raghavan et al. (2010). Results for early-type binaries with O primary
stars were presented by Mason et al. (1998), with additional analysis that compared the O and B massive stars to
the solar-type stars by Moe & Di Stefano (2017). Each of these efforts has discussed the observed distribution of
eccentricity as a function of orbital period (P, vs. €), highlighting that solar-type and more massive systems show
a clear correlation between period and eccentricity, with the shortest-period systems almost exclusively circular. In
contrast, the very low-mass systems (<0.1 Mg) presented by Dupuy & Liu (2017) did not show this correlation. This
result suggests a mass-dependent or age-dependent difference in dynamical histories or formation pathways of stellar
multiples.

M dwarfs make up ~75% of all stars (Henry et al. 2006, 2018), and a detailed study of their orbital architectures
would complete the sweep of stars along the main sequence. With masses spanning 0.08-0.62 Mg (Benedict et al.
2016), they are the primary product of the star formation process, so their ubiquity renders their orbital parameter
distributions of particular interest. In an initial effort, M dwarf systems showed a solar-type P, vs. e distribution
in Udry et al. (2000), but their results were limited by their small sample of 48 systems, and an expanded sample is
needed.

To bolster the statistics for M dwarf multiples, we are assembling a sample of at least 120 M dwarf systems with
accurately measured orbits spanning periods 0-30 yr and semimajor axes up to ~10 AU (depending on stellar mass).
This sample size makes this study the largest on M dwarf multiples’ orbits to date. With a particular focus on orbital
eccentricity, our goals include determining the period at which tidal circularization occurs and to reveal any structures
in the P, vs. e diagram. Our specific goal is to determine 120 orbits in an attempt to populate the final P, vs. e plot
with roughly 20 orbits in each 5-year bin of P,.,, making the eccentricity distributions clear overall as well as within
each of those regimes. The specific goal of 120 orbits has been set to maximize the detail of the final distribution with
consideration for availability of resources. We are collecting these orbits from broader sets of multiples observed in the
long-term RECONS (REsearch Consortium On Nearby Stars, www.recons.org) astrometry program (as described in
Vrijmoet et al. 2020), known orbits in the literature (including the ~30 published from the Udry et al. (2000) sample
described above, and a new multi-epoch speckle interferometry campaign.

This paper presents the first results of the speckle observations, which are being carried out at the Southern Astro-
physical Research (SOAR) 4.3 m telescope in Chile using the High-Resolution Camera (HRCam) and SOAR Adaptive
Optics Module (SAM; Tokovinin 2018b). This productive telescope-instrument combination has been used to derive
hundreds of high-quality orbits over the past decade (e.g., Tokovinin et al. 2019a, 2020b). Observations for this M
dwarf project have progressed at a rapid pace since commencing in 2019, with orbital motion clearly visible already for
several targets. The resulting characterization of M dwarf multiples, in parallel with our complementary multiplicity
study of K dwarfs (Henry et al. 2021), will provide key comparisons between the lowest mass stars and their higher-
mass cousins, as well as a data set well-suited to constraining formation and dynamical evolution models of multi-star
systems. In this paper, we focus on the M dwarfs, describing the sample in §2, the speckle observations in §3, and
results of the SOAR effort in §4. Discussion of the results proceeds in §5.

2. SAMPLE

The targets in this program are 338 known and candidate M dwarf multiples within 25 pc visible from the Southern
Hemisphere. By the end of 2020, 333 of these targets have been observed at SOAR.

Distances were determined via parallaxes from the RECONS astrometry program at the SMARTS 0.9m (§2.1 in
this paper; also Jao et al. 2005; Henry et al. 2018) and Gaia DR2 (Gaia Collaboration et al. 2016, 2018); all systems
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meet the 25 pc cutoff in one or both of these catalogs'. The full sample will be volume-limited, but does not need
to be volume-complete. M dwarfs have been selected as having V — K, > 3.70 using Johnson V' and 2MASS K
(hereafter K) filters, as well as absolute magnitude My > 9.02. These limits were established as the My and Mg
values corresponding to 0.6 Mg, using the Benedict et al. (2016) mass-luminosity relation for M dwarfs. This sample
thus spans spectral types M0 through M9. For 11 systems that had no V measurements available, we converted the
Gaia DR2 Bg and Rg magnitudes to V' using the relations for M dwarfs in Jao et al. (2018). Finally, the specifications
of HRCam+SAM on SOAR limit the sample to systems brighter than I = 14 mag and south of +25° in declination.

The primary goal of the project is to map the distribution of orbital eccentricity with respect to orbital period,
with the sample of 338 systems intended to support an even representation of periods 0-30 yr. Although determining
120 accurate orbits is the primary goal, the speckle sample includes several times that many systems; this reflects
our expectation that only a subset will have well-defined orbits with P, < 30 yr by the end of the 3-year observing
campaign. To reach 120 orbits, the full project sample will include orbits observed using additional methods from other
programs with a variety of time baselines and strengths, e.g., long-term astrometry and systems with spectroscopic
orbits. Because this paper presents results of the speckle subset only, hereafter the “sample” and similar terms will
refer to the speckle subsample rather than the ultimate full project sample that will include all observing methods.

Table 1 lists the entire speckle sample of 338 M dwarfs targeted at SOAR, including the five stars not yet observed
by the end of 2020. For each target are listed Right Ascension and Declination 2000.0 positions (columns 1-2), the
WDS-style coordinate name (column 3), the WDS discoverer code if the pair has been previously resolved (column
4), and the target name used in other RECONS work (column 5). These identifying parameters are followed by each
system’s parallax in milliarcseconds (mas; column 6) and the reference for that value (column 7), the V magnitude
and reference (columns 8 and 9), and the V — K color (column 10), where K is from 2MASS (Cutri et al. 2003). Given
next are the subsets to which each target belongs (columns 11-13, described in detail below) and flags (column 14)
for whether the system has been resolved (Y) or not resolved (N) thus far at SOAR (N/A indicates not yet observed),
with the flag “T2” marking systems with results presented in Table 2. Finally, a reference for the orbit of a system
is given (column 15), if it exists, with flag “T4” in this column marking systems with orbits presented in this work
(§4.3).

The target list of 338 systems is drawn from three sources: astrometric multiples identified through long-term
RECONS data (Jao et al. 2005; Henry et al. 2018), known multiples from the literature with potential Py, < 30
yr, and suspected multiples chosen based on their Gaia DR2 results (criteria described in Vrijmoet et al. 2020). As
illustrated in Figure 1, these subsets overlap each other — for example, some systems from RECONS astrometry are
already known multiples in the literature — and in the target list in Table 1 we have indicated each target’s subset
membership using columns 11-13. The selection and goals for each of these groups is described next.

2.1. 1283 Targets from the RECONS Astrometry Program

The RECONS program (Jao et al. 2005; Henry et al. 2018) began taking astrometry data in 1999, targeting red,
brown, and white dwarfs within 25 pc. Through 4-6 observing runs per year at the SMARTS 0.9m at CTIO, this
program has been mapping the motions of several hundred nearby stars for a median duration of 10 yr. This enables
the detection of binaries with orbital periods many decades in length, with orbital characterization possible for P,
up to ~30 yr in the longest-observed cases. Fully observed orbits are fit using the Markov Chain Monte Carlo method
introduced in Dieterich et al. (2018), which simultaneously fits the proper motion, parallax, and orbital motion of the
system’s photocenter; nine examples with Py, from 2-17 yr using RECONS data from the 0.9 m are given in Vrijmoet
et al. (2020).

RECONS astrometry qualified the selection of 123 targets for the SOAR observing list, with 37 of these targets
not qualifying for either of the other two subsets. Systems were considered high priority if their residuals to the
parallax and proper motion fit exhibited perturbations (PBs) that were characteristic of orbital motion due to bound
companions. These residuals are considered significant perturbations if their maximum amplitude is at least three
times the size of the average error per epoch for that system (with these errors typically 3-5 mas). In many cases
these residuals clearly traced out orbital motion by the system’s photocenter, with a smooth rise and fall in R.A.
and/or Decl. axes, depending on orbital coverage, observing cadence, and the particular orbit shape. Orbital period
can be estimated by eye in these cases, or constrained by a preliminary fit to an astrometric orbit model. Targets were

L A few systems do not meet the 25 pc distance cutoff using updated parallaxes from Gaia EDR3 (Gaia Collaboration et al. 2020), which

was released after this SOAR program began.
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0.9m PB
123 total
DR2 sus. Lit. mult.
252 total 189 total

Figure 1. Venn diagram illustrating the three subsets of the SOAR sample of nearby M dwarfs. The area of each circle is
proportional to the number of targets in that subset, but the overlapping regions are not to scale. Each circle is labeled with a
reference to the subset’s source: “0.9m PB” for targets showing perturbations (PBs) in the RECONS astrometry program at
the CTIO 0.9m, “Lit. mult.” for known literature multiples, and “DR2 sus.” for systems suspected to be multiples based on
their Gaia DR2 results. The number of targets is given under each subset name, and the numbers in the overlapping sections
indicate the number of targets common to multiple subsets.

selected for our SOAR speckle campaign if these residuals thus indicated an orbit with likely P4, < 30 yr. In other
select cases the residuals were clearly perturbed but the motion was more difficult to interpret, which may occur when
an orbit shorter than ~3 yr is observed with the relatively sparse cadence of the RECONS observations or the PB is
weak because two components have similar fluxes and the photocenter consequently moves very little.

The goals for the “0.9m PB” subset (column 11 in Table 1) are thus twofold:

e For systems with orbits that can be fully characterized in the RECONS astrometry, resolving the components
will allow us to determine their individual dynamical masses (following the methods outlined in van de Kamp
1967).

e For targets with PBs that are ambiguous rather than clearly due to orbital motion, resolving a second star will
confirm that companion and constrain its orbit, aiding interpretation of the RECONS astrometric residuals and
ongoing observing priorities for the 0.9 m program.

In both cases, non-detections will place constraints on the natures of the potential companions and their orbits, and
in some cases (notably, in the unclear ones) non-detections will allow us to rule out a companion as the source of the
astrometric residuals.

2.2. 189 Targets from Known Multiples in the Literature

To enrich the sample, and because astrometry is less sensitive to some types of binaries (e.g., equal luminosity
components), the SOAR target list was augmented with known M dwarf multiples from the literature. These known
multiples constitute 189 targets, with 42 not belonging to either of the other subsets. Our observations are intended
to capture orbital motion, so these targets were limited to pairs that had previously been resolved at separations
< 270 or likely orbital periods less than 30 yr. Not all of these pairs have been resolved in the literature; about a
third are known multiples based on only spectroscopic or astrometric results. These systems were primarily selected
by cross-matching the Sixth Catalog of Orbits of Visual Binary Stars (Hartkopf et al. 2001) against coordinates of M
dwarfs from Gaia DR2 and the RECONS astrometry target list. These were augmented by some M dwarf multiples
from the Washington Double Star Catalog (WDS; Mason et al. 2001) and private communications from collaborators.

The intention of the observations for this “Literature multiples” subset (column 12 of Table 1) is to add new
measurements to the existing data sets for each system, with the following goals:
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e Enable fitting of each system’s relative orbit by extending the time baseline of observations.
e Improve upon any existing orbit fits, in particular by refining the precision of the orbital elements.

2.3. 252 Targets Selected from Gaia DR2

Gaia DR2 (Gaia Collaboration et al. 2016, 2018) released proper motions and parallaxes for ~1.7 billion sources
based on an astrometric model that includes only those two sources of motion, with orbital motion fits not planned
until future data releases. Systems exhibiting orbital motion from a bound companion should thus exhibit evidence of
poor astrometric fits. Vrijmoet et al. (2020) showed that nearby M dwarfs with unresolved companions can be selected
based on several DR2 fit parameters, akin to the astrometric residuals in RECONS data (§2.1).

Gaia DR2 results were used to identify 252 total M dwarfs for the SOAR observing list, with DR2 being the only
source of potential multiplicity for 95 targets. This evidence is based on the analysis of Vrijmoet et al. (2020), and
most of these “DR2 suspects” met at least some of the final criteria presented there. Those specific DR2 criteria
identified in Vrijmoet et al. (2020) were:

1. missing parallax or missing catalog entry,

2. parallax_err > 0.32 mas for G < 18 (> 0.40 mas otherwise),
3. astrometric_gof_al > 56.0,

4. astrometric_excess_noise > 108.0, and

5. ruwe > 2.0.

That work found that at least three out of four systems meeting at least one of these thresholds were multiples
unresolved in DR2. While selecting targets for this subset of SOAR observations, we anticipated that the values of
these criteria may eventually be lowered if many stars that were presumed single are later revealed to be binary.

The goals for this group of “DR2 suspects” (column 13 of Table 1) are:

e Map orbits of new multiples with periods that will be at least 50% complete by the end of this 3-year observing
campaign (i.e., with Pyp, < 6 yr). The DR2 selection criteria should be more sensitive to these particular systems
because of its relatively short observing baseline of 22 months.

e Confirm the validity of the Vrijmoet et al. (2020) criteria for selecting binaries from Gaia DR2 via the resolution
of companions, and revise the criteria if necessary.

3. OBSERVATIONS AND DATA REDUCTION WITH HRCAM+SAM

The observations presented here were made over 20182020, with most completed between July 2019 and December
2020, representing the first half of our planned 3-year program. Many systems in our sample were already observed
at SOAR prior to this project as part of earlier initiatives to investigate M dwarfs in the Southern Hemisphere. Their
results do not appear in Table 2 because those results were presented in previous SOAR papers (Tokovinin et al. 2021,
2020b); instead, they have a “Y” or “N” in column 13 of Table 1 with no additional flags.

Time awarded for the speckle observing programs of coauthors Tokovinin and Vrijmoet was combined in order to
increase the opportunities for timely observations of fast-orbiting systems. In preparation for each observing run,
previous SOAR observations and RECONS astrometry were considered, and systems that had exhibited rapid orbital
motion were prioritized for the upcoming run. This procedure improved the likelihood that defining features of the
orbit shapes would not be missed.

All of the observations used HRCam, the high-resolution camera mounted on the SOAR Adaptive Module (SAM,
Tokovinin et al. 2016b), in the seeing-limited mode (no laser guide star was used). Frames were taken almost exclusively
in the Kron-Cousins I filter, usually in 2-3 sets (data cubes) of 400 frames per target, with integrations typically 24
ms per frame. These sets were each later processed independently to verify results. Most observations use the HRCam
narrow 3" field of 200x200 pixels, whereas pairs known to have separations of 1”4 or more were observed with the
400x400 field. The resolution limit in I is usually 40—45 mas depending on target brightness and sky conditions, but
can be as close as 35 mas in some cases (see Figure 1 of Tokovinin et al. 2020b). Targets that are unresolved in the
first two attempts are usually observed a third time, then retired from the program if still unresolved.
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The data are processed and reduced for this program using the standard procedures described in Tokovinin et al.
(2010) and Tokovinin (2018b), and representative images of the reduced data products are shown in Tokovinin (2018b).
In brief, for each target the power spectrum and autocorrelation function are calculated, and companions are noted via
power spectrum fringes or secondary peaks in the autocorrelation function. Fitting an empirical model to the power
spectrum yields the parameters of each detected pair: the separation between components (p), the position angle of
the secondary with respect to primary star (6) (north = 0° through east = 90°), and the difference in magnitude
between components (Am). Important details about these results are:

e The position angle determined through this procedure is only ascertainable modulo 180°, leaving some ambiguity
in the secondary’s true position on the sky. This ambiguity has been eliminated whenever possible by applying
a shift-and-add procedure to each target’s data (Tokovinin 2018b); this process reveals the true quadrant for
companions that are not too faint but still have some magnitude difference with their primary star (Am 2 0
mag). These results are noted with the “q” flag in Table 2, indicating that the quadrant has been determined.

e For some observations of wider pairs a separate procedure is used to determine the magnitude difference using
the average image for a target (described in detail in Tokovinin et al. 2010). This method produces more reliable
photometry for these cases where the stars’ separations are greater than image resolution, reducing bias from
speckle anisoplanatism. Observations with Am determined with this method are marked by a “p” in Table 2,
indicating that this photometric method has been used.

e For observations in which no companion was detected, a contrast curve is computed to report the detection
(magnitude) limits as a function of the distance from primary star on the sky (for example, see Figure 5 of
Tokovinin 2018b). The parameters of this curve are reported in the results in Table 2 as the minimum separation
resolvable for pairs with Am < 1 mag, as determined from the maximum spatial frequency of the power spectrum,
and the maximum detectable magnitude difference at separations of 015 and 170 (the dynamic range).

4. RESULTS

Through the end of 2020 and including previously published results, 333 targets on this program have been observed
at least once at SOAR via 830 total observations. Of these targets, 211 (63% of the total sample) had a companion
detected at least once, representing 204 total systems?. In this first half of our 3-year program, most companions were
observed numerous times to confirm that the detected object was a true companion and not a background source; the
remainder have follow-up observations planned. For each true multiple, these initial observations will then contribute
to that system’s orbit mapping.

The results are detailed in Table 2 for both newly resolved and unresolved systems. Targets with previous resolutions
appear instead in the yearly SOAR publication series (e.g., Tokovinin et al. 2020b, 2021). Table 2 gives the WDS
coordinate name or anticipated WDS name in column 1. In column 2 is either the reference for the first resolution of
that system, a single asterisk (*) for the first resolution of a known multiple, two asterisks (**) for the first resolution
of a system that was previously, at best, only a candidate multiple (see §4.1 for details), or “none” if the system was
not resolved. Each observation of a target is then distinguished by its date (column 3) and Y /N flag for whether
or not the companion was detected at that epoch (column 4). Observations in which the companion was resolved
include the separation, position angle, and magnitude difference between components (columns 5-7). Observations
with no detected companion list the minimum resolution detectable and Am limits at 0”15 and 170 from the primary
star, respectively (columns 8-10). Finally, observation flags (column 11) note several of the cases described in §3,
such as when the quadrant of the position angle is unambiguously determined (q), when the magnitude difference was
determined photometrically from the average image (p), when the observations resulted in noisy data (:), generally
leading to less robust limits, or y for the one observation done through a y filter rather than the I filter.

Uncertainties on the individual measurements are not listed here, as these would require a more detailed analysis
than feasible for this paper. The full measurement errors consist of internal errors, which could be determined by
comparing each observation’s data cubes, and external errors, which can be estimated from HRCam measurements
of well-characterized binaries (“calibrators”), Gaia resolved sources (Tokovinin et al. 2019a), and residuals of each
system’s orbital fit. The typical deviation of the calibrators from their orbit models is 1-3 mas in separation and 0.2°

2 In seven cases, a higher-order multiple with two components separated by a few arcseconds represents two targets for this speckle survey,

and as such is represented by two lines in Table 1 (and counts as two targets throughout this paper).
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in position angle, and in a similar procedure with SOAR speckle data, Mann et al. (2019) found errors of 3.8 mas and
0.94° are appropriate additions to the internal errors (typically <2 mas). For this reason we have assigned errors of 5
mas to all SOAR HRCam measurements when fitting orbits, and postponed the full derivation of external errors until
this 3-year observing program is complete. See §4.3 for additional details of the orbit fitting routine.

4.1. Detections

Table 3 summarizes the detection rates for each group within the full sample (§2). For each named subset (column
1), it provides the number of targets observed (column 2), the number resolved (column 3), the percentage of observed
targets that were resolved (column 4), and the number of targets not yet observed by the end of 2020 (column 5).

Of the 211 companions resolved in our sample, 97 had no previously published resolutions, making these results
their first published positional measurements. These newly resolved systems are marked with asterisks in column
2 of Table 2, broken into two categories. A single asterisk (*) denotes the 34 systems that were already reported
to be multiples based on other published data, e.g., astrometry or spectroscopy. A double asterisk (**) denotes new
resolutions for 63 systems with no previously reported multiplicity in the literature — these were included in the target
list due to anomalies in their RECONS or Gaia DR2 astrometry. These are newly discovered multiples in addition to
being new resolutions.

Additionally, 114 companions noted here as resolved at SOAR already had resolutions in the literature; nearly all of
these systems are listed as “Y” in Table 1 but without the “T2” flag, as they are presented in Tokovinin et al. (2020Db),
Tokovinin et al. (2021), and previous publications in that yearly series. Column 2 of Table 2 gives the reference for the
first resolution of that system. For all systems with data already in the literature, the new observations presented here
and in the other SOAR results papers will ultimately be combined with previous results to improve orbital coverage.
We have already employed this strategy for the orbits we are presenting here (§4.3).

Data from the RECONS astrometry program at the SMARTS 0.9 m already reveals perturbations in 59 of the 211
resolved pairs. That astrometry provides maps of the photocentric orbits, hence the resolutions of companions in these
cases will enable us to solve for the individual masses within each pair as in, e.g., Dieterich et al. (2018). Each of these
new masses will contribute to the currently modest number of dynamically determined individual M dwarf masses
known to date (Benedict et al. 2016).

Finally, there are 249 targets observed (and 3 targets not observed) that showed some evidence of poor astrometric
fits in Gaia DR2 and were included based on preliminary results of the Vrijmoet et al. (2020) analysis. Our SOAR
observations reveal that 188 (76%) of these M dwarfs host a companion. This result highlights the utility of that
method of selecting likely multiples using Gaia’s astrometric fit parameters, especially for these nearby, low mass
systems. See §5.4 for further discussion of this result, details about the DR2 criteria outlined in Table 2, and the
implications.

Figure 2 shows the separations (p) and magnitude differences in I band (AT) for each observation that detected a
companion. This distribution of exclusively M dwarfs is similar to that of the wider sample observed yearly by SOAR
(shown in Figure 1 of Tokovinin et al. 2020b). The most notable difference is our distribution shows a paucity of
systems with AT > 1.5 mag and p < (/1. This discrepancy could reflect the higher fraction of very faint companions
in our sample compared to the other samples observed yearly at SOAR. The mass-luminosity relation is known to
experience a severe drop at optical wavelengths at low M dwarf masses (Benedict et al. 2016). Therefore, it is not
surprising that companions only slightly less massive than their primaries may have large Al values compared to their
primaries and remain undetected at SOAR.

4.2. Non-detections

The 122 targets observed with no companions detected at SOAR still impart important information via the detection
limits given in columns 8-10 of Table 2. Because these observations were conducted in the [ filter, in many cases these
non-detections restrict potential companions to the regimes of cool white dwarfs, very low-mass stars, or brown dwarfs.
Examples include LHS 1582 AB (03434—0934), SCR, 0723-8015 AB (07240—8015), and LP 848-50 AB (10427—2416),
all of which exhibit clear orbital motion in their long-term astrometry (Winters et al. 2017; Vrijmoet et al. 2020).
Other true multiples unresolved here may have orbits too tight to resolve, or have components positioned unluckily
too close to each other on the sky at the epoch of observation. In each of these cases, the non-detection information
given here provides constraints on orbits and companion masses that can be used in concert with other efforts to reveal
information about any unseen and/or undetected companions.
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Figure 2. Separation p in arcsec and magnitude difference in I band for each observation that resolved a companion, excluding
those for which the data were exceptionally noisy (“:” flag in Table 2). The 41 mas formal diffraction limit of SOAR is indicated
with the vertical dotted line. This sample is intentionally focused on the closer pairs (< 170) that are more likely to show orbital
motion over our 3-year campaign.

4.3. Orbits

Here we present five orbits fit using the SOAR observations, often combined with additional data available in the
literature; all but LHS 501 AC are the first orbits for the systems. These five orbits represent the highest-quality fits
possible with the data from this program thus far, and fortuitously are also representative of the range of size and time
scales accessible to this program. The orbital periods range from 0.67-29 yr, and each has at least four observations
taken during the first 1.5 years of this observing program. The full orbital parameters are given in Table 4 and
illustrations of the fits are shown in Figure 3. Each dataset was fit with the ORBIT code (Tokovinin 2016a), which uses
the Leavenberg-Marquardt least-squares method to identify the model orbit that best fits the weighted observations.
The weights are inversely proportional to the errors on each point, which for these observations have been set to the
typical external HRCam errors of 5 mas, and for literature observations are set to the published errors. The resulting
fits have errors ranging from 0.3%—-7.2% in orbital period and 1.3%—6.7% in semimajor axis. These errors on the
orbital parameters are determined by the fitting algorithm.

Each system with an orbit fit is discussed briefly below. In each case we also provide estimates of the component
masses using our work toward a mass-luminosity relation in I band (Vrijmoet et al. 2021). These estimates should be
considered preliminary and are only intended as general guides of the mass regimes for these M dwarfs.

e G 131-26 AB (00089+2050, BEU 1) is a known flare star with a stellar companion first detected by Beuzit et al.
(2004) in 2001, then resolved again in 2012 by Janson et al. (2014) and in 2014 by Horch et al. (2015). We have
resolved it four additional times in 2019-2020 and fit all of these data together to determine an orbital period of
5.918 £0.017 yr. Combining this orbit with the Gaia EDR3 parallax indicates a total system mass of 0.51 £0.05
Mg. The individual components’ M values are consistent with 0.3 Mg and 0.2 M), a good match to the system
total mass.

e 2MA 0015-1636 AB (00160—1637, BWL 2) was resolved by Bowler et al. (2015) in 2011, who suggested an orbital
period of 4.5 yr based on their observed separation. With our additional five points we find an orbital period of
4.187 £ 0.039 yr, yielding a total mass of 0.41 4+ 0.08 M using the EDR3 parallax. The individual components’
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absolute magnitudes imply masses of 0.25-0.3 M for each component. These values are somewhat higher than
indicated by the total dynamical mass, pointing to some inaccuracy in the orbit or the parallax. This is validated
by the Gaia reduced unit weight error (RUWE) value of 4.1, indicating the parallax is not well fit. The mass
discrepancy would be eliminated by a 7% smaller parallax, or by increasing the orbit’s semimajor axis by 7% or
decreasing its period by 10%. Continued observations at SOAR will allow us to refine the orbit, and future Gaia
data releases will likewise improve the system’s parallax.

e LP 993-115 BC (02452—4344, BRG 15Aa,Ab), also known as LP 993-116 AB, is a common proper motion
companion to LP 993-115 A (44”; Bidelman 1985). The C component was first identified by Bergfors et al.
(2010) with lucky imaging and resolutions also reported in Janson et al. (2012) and Janson et al. (2014). We add
four new resolutions to map the other side of the orbit, and derive a period of 28.466 + 2.056 yr. Using the EDR3
parallax, this suggests a total mass of 0.4240.23 Mg for BC, although this value is poorly constrained. Individual
absolute magnitudes for the B and C components are consistent with component masses of 0.2-0.25 Mg, each.
This is the first orbit published for this subsystem of this higher-order multiple.

e SCR 0533-4257 AB (05335—4257, SYU 7Aa,Ab) was first resolved by Shan et al. (2017) in 2014, and to this
we have added six points in 2019-2020. With an orbital period 0.672 4+ 0.003 yr, the orbit and EDR3 parallax
indicate a total mass of 0.40 £ 0.07 M. This is consistent with the possible period of 9 months noted in the
unresolved RECONS astrometry by Riedel et al. (2018). The individual absolute magnitudes of each component
are consistent with 0.25 Mg and 0.15 Mg, together an excellent match to the total dynamical mass.

e LHS 501 AC (20556—1402) is a now-resolved primary with a wide companion known as LHS 500, separated by
107”7 (Jao et al. 2003). The AC pair had not been resolved prior to this work, but was noted to be an astrometric
multiple by Jao et al. (2011) based on the RECONS astrometry data. Baroch et al. (2018) noted it to be SB2
and presented a spectroscopic orbit fit. Our new orbit was fit to their spectroscopic data simultaneously with
our four new visual resolutions using the same ORBIT code as for the other four orbits in this work. The resulting
orbital period of 1.855 + 0.014 yr is shorter in length but ten times more precise than the Baroch et al. (2018)
period (2.22 £ 0.16 yr). Our eccentricity is also significantly different, at 0.242 4 0.008 vs. their 0.402 £ 0.059.
Additional observations underway will significantly improve future orbit fits for this system, as the radial velocity
model still shows some minor discrepancies with the data (lower rightmost panel of Figure 3). With our result
and the EDR3 parallax we derive a total mass of 0.37+0.02 M. The individual absolute magnitudes correspond
to stars with masses of 0.25 Mg and 0.2 Mg, which is roughly consistent to the total dynamical mass, although
future refinement will be necessary for this orbit.

5. DISCUSSION

As outlined in §1, our goal is to catalog at least 120 orbits with P,y < 30 yr with reliably determined orbital
periods and eccentricities through the combination of this 3-year speckle campaign, the long-term RECONS astrometry
program at the SMARTS 0.9m, and orbits in the literature. A set representing orbits out to (at least) 30-year periods
will be necessary to draw significant conclusions about the formation and evolution of these systems. Selecting 120
orbits evenly distributed in orbital period will ensure that there are ~20 orbits in each 5-year bin of P, in the final
Porp vs. e plot. More fundamentally, the goal of 120 orbits is a compromise between the need to characterize the
P,.1, vs. e relation with maximum detail and a realistic expectation based on our prior experience and availability of
resources.

The abundance of detected companions and promising initial orbit fits resulting from this first phase of our SOAR
effort provide several advances toward the overall project regarding orbit distributions of M dwarf multiples. For all
systems in Table 2, both the resolutions and non-resolutions reported here provide valuable constraints on the orbits of
their companions or the likelihood of each star’s multiplicity. Notably, we have increased the total number of resolved
M dwarf multiples within 25 pc by 97, representing 194 targets for further study of M dwarf multiples’ properties. We
have also secured observations for 140 systems that had been previously resolved, providing not only new points for
orbit determinations, but relative fluxes in the I band that can be used for a robust mass-luminosity relation at I.
Finally, the five new orbits presented here can be added to the key P, vs. e plot, and each new fit helps to identify
reliable orbits as well as those for which more data are required to reach the orbital element precision needed to reveal
clues about the star formation process.
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Figure 3. Five visual orbits for binaries resolved at SOAR, plus one spectroscopic orbit that was fit simultaneously with the
corresponding visual orbit for LHS 501 AC. For the visual orbits, blue lines denote the fit, filled circles are SOAR observations,
and open circles are observations added from the literature. Red arrows indicate the direction of motion of the secondary star
around the primary, and the black star and dotted line denote the primary star and line of periastron. In the spectroscopic
orbit (bottom right panel), the points and solid line are the observations and fit, respectively, for the primary component, and
the open points and dashed line are the observations and fit for the secondary. Left to right, top to bottom: G 131-26 AB,
2MA 0015-1636 AB, LP 993-115 BC, SCR 0533-4257 AB, LHS 501 AC visual orbit, and LHS 501 AC radial velocity orbit
(observations from Baroch et al. 2018). Sources for additional visual observations are specified in Table 4.
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5.1. Contributions to Nearby M Dwarf Orbits

As of July 2021, ~200 orbits in the Sixth Catalog of Orbits of Visual Binary Stars (Hartkopf et al. 2001) are those
of M dwarf systems within 25 pc. About one third of these have periods longer than 100 yr, and another third have
periods 10-100 yr, with the remaining third shorter than 10 yr. Our SOAR program targeting orbits 0-6 yr is thus
well poised to make a significant contribution to this catalog. All but one of the orbits presented here have P, in
that range, demonstrating proof of concept for this plan.

Four of the five orbits presented here are new, while the fifth (LHS 501 AC) represents a substantial revision over
the previously published result (Baroch et al. 2018). This set of orbit results is roughly representative of the expected
yield of our program: for most orbits, we will combine existing data with our new data to produce fits for systems that
previously had no published orbits. Several dozen more orbits will be updates to systems that already had solutions
published; these will be a substantial fraction of the 73 targets in our sample that already have orbits in the literature
listed with Py < 30 yr.

Overall, we expect to fit at least ~50 orbits using the full three years of observations planned for this program. This
estimate is based on the number of systems already showing substantial motion over the first 1.5 yr of observations and
includes improvement of published orbits as well as new orbits. These will substantially contribute to the 120-orbit goal
to establish the M dwarf P, vs. e distribution, supplementing the planned contributions from RECONS astrometry
and the literature.

5.2. Implications for the RECONS Astrometry Subset (0.9m PB)

Of the 120 systems observed from the 0.9m PB list, 59 companions were detected using SOAR. Among these, 22
(37%) had not been resolved previously. The lower yield of this subsample compared to the other two is not too
surprising because astrometry and speckle interferometry are each somewhat sensitive to different types of compan-
ions. Speckle searches are most sensitive to equal-luminosity components, but those systems exhibit no astrometric
perturbation if both components are equal luminosity and have the same mass. In addition, many of the astrometric
companions are likely very low mass stars or brown dwarfs that are beyond the magnitude difference limits of the
speckle observations.

When no companion is detected with speckle, the magnitude limits reached at various separations constrain the
nature of the astrometric companion and its orbit. Many cases in which these estimated mass limits were notable are
described in detail in the Appendix (§A). For each system, we have used the combined magnitude of the pair and the
limiting magnitudes in the speckle results to estimate the components’ fluxes, which we then combine with the size
of the astrometric perturbation to estimate a limit for each companion mass (following van de Kamp 1967). Most of
these systems have been described in previous work in The Solar Neighborhood series, often with plots showing their
perturbed astrometric residuals, hence our descriptions here can be considered updates to those notes.

We used a similar procedure to estimate companion masses for the 0.9 m PB systems that SOAR did resolve. These
masses (given in §A) are only rough estimates determined from the sizes of the photocentric displacements in the
astrometric pertubations, rather than the fully characterized photocentric orbits. Future work will determine reliable
photocentric orbits that can be combined with these SOAR resolutions to yield dynamical masses for the individual
components.

5.3. Implications for the Known Literature Multiples Subset

Of the literature multiples, 140 out of 188 pairs observed were resolved at SOAR. These resolutions were the first
ever for 34 of these systems, while 106 had been previously resolved by others. Of the 48 unresolved systems, nearly
all were initially identified as multiples through JH K imaging or spectroscopic studies, hence their companions were
likely too faint (e.g., brown dwarfs) or too closely bound (spectroscopic binaries) to resolve at SOAR in I band. The
new resolutions are systems that often have complementary (non-imaging) data in the literature, and the previously-
resolved systems have imaging that precedes our SOAR results. Both cases will assist in our orbit fitting goals, as
this extra information or lengthened time baseline both enable orbit fits to be made earlier than with our SOAR data
alone. The five orbits presented here demonstrate that concept.

Our selected 30-year orbital period limit is meant to capture as broad a picture of M dwarf orbits as is feasible for a
single observational program, in particular showcasing systems that fall between the widest binaries and those that are
tightly bound because of tides. Inevitably, some of the systems we have resolved will prove to have orbits longer than
our planned 30-year limit, as many of these are wider pairs initially detected with less sensitive instruments. In these
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cases, the data from this campaign can be used to place constraints on those orbits, e.g., choosing appropriate cadences
on these slow-moving systems to focus observations at future epochs when a companion moves quickly through its
periastron passage. The ultimate contribution of multi-decade orbits will thus come through observations collected
over multiple projects, with updated orbits more precisely determined than currently possible. For now, our SOAR
observations of these literature multiples provide a legacy dataset that will contribute to future efforts long after our
project is complete.

Long orbits can often be constrained by comparing their motions measured at two widely separated moments (e.g.,
Brandt et al. 2019; Currie et al. 2020; Bowler et al. 2021). These recent efforts use the Hipparcos-Gaia Catalog of
Accelerations (HGCA; Brandt 2021), which has presented recalibrated proper motions of systems measured by the
Hipparcos and Gaia missions, ~30 years apart. Another catalog based on the same principle has been compiled by
Kervella et al. (2019). There are 60 systems on our program with an entry in the HCGA and many of these likely
have accelerations evident in that catalog. By combining positional measurements with these proper motion changes,
we could better constrain the orbits of these systems, especially those with very long periods. We will consider the
use of this approach in our future work on orbits.

5.4. Checking Criteria for Unresolved Multiples in Gaia DR2

A total of 249 of the 252 systems were observed from the DR2 suspects sample, selected at least partly based on their
Gaia DR2 astrometric fits (91 stars were included based only on those fits). This subset was created because during
the SOAR sample construction, the then-preliminary results of the Vrijmoet et al. (2020) analysis showed specific DR2
parameters to be reliable markers for unresolved multiplicity. The SOAR observations validate the defined markers,
with companions detected for 188 stars (76% of that group). Many of these systems had no previously published
resolved companions and are marked with ** in column 2 of Table 2.

The final analysis of Vrijmoet et al. (2020) ultimately listed five criteria that could be used to flag likely multiples in
DR2 (given explicitly in §2.3): missing parallax or missing DR2 entry, and four threshold values of the DR2 astrometric
fit parameters. That work involved constructing a sample of 542 RECONS parallax program targets that were cross-
matched with Gaia DR2 results, and used those targets’ multiplicity information to identify the DR2 astrometric fit
parameters that best indicated the presence of unresolved companions. For each of these four identified parameters,
threshold values were then determined, above which three out of four systems were unresolved multiples.

Of the 252 systems in our sample flagged in the preliminary stages of that DR2 analysis, 217 of the stars observed
fulfill two or more of the final Vrijmoet et al. (2020) criteria. SOAR detected companions for 176 (81%) of these
217 targets, confirming that the majority of poor fits in DR2 were due to companions bright enough to detect with
SOAR’s HRCam+SAM. As Gaia’s observing time baseline increases with future data releases, these fit flags will reveal
multiples with longer orbital periods and fainter companions (smaller masses), as long as the Gaia data are fit with
the single-star astrometric model. Clearly, Gaia data can be used to reveal many new potential stellar multiples before
the final release of its binary star solutions.

For the 41 of 217 observed systems that fulfilled at least two of the criteria from Vrijmoet et al. (2020) but did
not have a companion resolved, the presence of a companion cannot be fully ruled out. Indeed, roughly half of this
subset have had their companions already confirmed through other means, such as spectroscopically or by showing
unambiguous orbital motion in RECONS astrometry. Companions that are very faint or orbiting close to their primary
stars will not be detectable with HRCam+SAM at SOAR; the largest magnitude difference observed here was AT = 5.0
and the smallest separation seen was 24 mas. The DR2 suspects marked unresolved in Table 1 must still be regarded
as likely multiples, and future observations are warranted to probe for very faint and very close-in companions.

To update the criteria for unresolved multiplicity of Gaia DR2 targets, we have added the new SOAR detections to
the sample used in Vrijmoet et al. (2020). Although the sample used in that analysis was not volume-complete beyond
13 pc, its proportion of multiples within any distance matched the observed multiplicity found by more comprehensive
surveys (Winters et al. 2019). To preserve that feature and avoid overreporting multiples, we have updated the sample
with these new detections by only updating the multiplicity information for the existing targets, without adding to
that sample any new targets that may have been observed here. This sample multiplicity update does not substantially
change the Vrijmoet et al. (2020) results. The threshold values of the four useful DR2 parameters may be lowered
by ~10% to select samples in which three out of four systems are unresolved multiples. The fifth criterion of missing
DR2 entry or parallax remains valid. This consistency speaks to the robustness of the overall results of Vrijmoet et
al. (2020).
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6. CONCLUSIONS

In this work we have presented observations from the first 1.5 yr of our planned 3-year speckle interferometry
campaign at SOAR to observe M dwarfs within 25 pc. Key results to date include:

e speckle measurements of 333 M dwarfs in 320 systems; 211 (63%) of these M dwarfs were resolved
e four new orbits and one revised orbit with periods of 0.67-29 yr for M dwarfs with masses of 0.15-0.30 Mg

e measurements of resolved companions for 76% of candidate multiples from Gaia DR2 identified by criteria for
their astrometric fit parameters, as described in Vrijmoet et al. (2020)

Each observation reported here of a stellar companion is a step toward our goal of mapping the orbits of nearby M
dwarf multiples. Our project specifically targets M dwarf systems with orbital periods of 0-30 yr and semimajor axes
0-6 AU and the five orbits presented here span this full range, including some of the fastest-orbiting in our sample
and some with the richest sets of similar observations in the literature. Many systems had already been observed at
SOAR prior to this project and have measurements described in recent papers (e.g., Tokovinin et al. 2020b, 2021).
HRCam+SAM at SOAR has had many successful years observing stellar multiples (10 yr as of Tokovinin 2018b),
and by focusing on the lowest-mass stars here we have thoroughly demonstrated its capabilities regarding faint, red
systems.

Since the preparation of this paper began, with each observing run we have noted more systems that have enough
data for orbit fits. This speckle program is thus well on its way to forming a significant contribution to the overall
project of mapping M dwarf orbits, and we anticipate continued success in the remaining 1.5 yr of this program. A
future publication at the conclusion of this campaign will include several times the number of orbits presented here.

This project is an effort bringing together several observing methods, and as such demonstrates the power of these
methods to complement and inform each other. Long-term ground-based astrometry from RECONS provides many full
orbits and highlights systems with anomalous motion (but not necessarily distinguishable orbits) for speckle follow-up.
The speckle interferometry from SOAR confirms or constrains those systems, and also efficiently captures the equal-
mass systems that are not easily detectable via unresolved astrometry. Speckle observations may be combined with
other resolutions in the literature, e.g., from adaptive optics, allowing orbits to be observed and characterized over
long time baselines.

A multi-method approach is essential to this project, as the spatial scales involved in binary star formation and
dynamical evolution span orders of magnitude in AU. The complex mix of physics may depend on several fundamental
properties such as mass, system mass ratio, and age, making it imperative that a wide range of orbits be considered
to make meaningful comparison between models and observations. Ultimately, the multiples reported here have far-
reaching potential consequences for M dwarf multiplicity, star formation, and local Galaxy mass distribution. This is
because M dwarfs dominate the Galactic population, accounting for three out of every four stars (Henry et al. 2006,
2018). Tt is therefore essential to use all of the observing techniques at our disposal to determine not only which
systems have companions, but to measure accurate sizes and shapes for their orbits, as those clues will reveal how the
systems formed.
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APPENDIX

A. SYSTEMS WORTHY OF NOTE

Here we describe several systems for which these SOAR results add significant new information or shed light on
unusual observational histories. They are listed in order of ascending R.A., with WDS coordinate designations given
in parentheses. The RECONS astrometry program mentioned for many systems refers to the long-term effort at the
SMARTS 0.9 m.

e SCR 0128-1458 AB (01287—1458):

Through four resolutions at SOAR, we have confirmed the presence of this companion first noted tentatively
in RECONS astrometry residuals by Riedel et al. (2018). The AI of 2.6-2.7 mag indicates the companion has
mass 0.2 Mg. Continuing observations will provide valuable future constraints for the photocentric orbit in
the RECONS astrometry, which is still incomplete after 10 yr of data.

o LEHPM 1-1882 AB (01477—4836):

Winters et al. (2017) revealed this binary via RECONS astrometry residuals. Its period is long, with the orbit not
yet complete in what is now 15 yr of data. Although Winters et al. (2017) suggested the secondary companion
contributes little light in R band, our three SOAR resolutions at [ indicate a stellar companion with luminosity
similar to the primary.

o LHS 1561 AB (03347—0451):

Seven SOAR observations over 2018.8-2020.9 have resolved this system’s secondary to have moved 20° through
its orbit. Jeffers et al. (2018) reported this system to be a spectroscopic triple; the tertiary is presumably less
luminous and/or more closely bound to the primary, as our observed component’s motion and AI indicate that
we are consistently resolving the same (secondary) companion.

e LHS 1582 AB (03434—0934):

This system’s 5 yr photocentric orbit was fully characterized in Vrijmoet et al. (2020), but the companion was
not detected in our two SOAR observations. Comparison of the photometric (13 pc) and trigonometric (20 pc)
distances by Riedel et al. (2010) and Lurie et al. (2014) indicated that the companion contributes noticeable
light to the system. The limiting AT values of 1.4 mag at 0”15 and 4.3 mag at 170 from SOAR suggest it has
mass <0.15 Mg.

e GJ 1068 (04105—5336):

Two observations of this target revealed a relatively closely separated background star; at 2019.6136 its separation
and position angle were 37177 and 38.6°, and at 2020.1111 they were 571628 and 35.5°. Comparison with archival
images from the CTIO/SMARTS 0.9 m confirm that this background star is not bound to GJ 1068. This target’s
results are thus not included in Table 2.
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e SCR 0702-6102 AB (07028—6103):

We identified this system’s companion early in the SOAR program as a fast mover, and have resolved it seven
times from 2019.86-2020.99. The companion creates a low-amplitude perturbation in the RECONS astrometry
residuals (as noted in Winters et al. 2017) with a period of ~2.5 yr. That motion is consistent with what we
have observed in the SOAR, data.

e SCR 0723-8015 AB (07240—8015):

This system’s color and absolute magnitude are consistent with a ~0.1 Mg star, and the clear perturbation
indicates an orbital period that has not yet wrapped in 17 years of RECONS astrometry data. The companion
has not been detected in three observations in I at SOAR to limits of AT = 1.6 and 3.0 at 0715 and 17,
respectively, indicating that it is of very low mass. This implies that the companion is a very low luminosity red
or white dwarf, or a brown dwarf.

e SCR 0838-5855 AB (08380—5856):

The RECONS astrometry indicates a large perturbation first shown in Winters et al. (2017) that now exceeds
50 mas in both RA and Decl. directions, but has not wrapped in 14 years of coverage. The two new SOAR
resolutions are the first ever for this system and indicate the companion has M; = 14.6, placing it very near end
of the main sequence with a mass <0.1 Mg,.

e LHS 2071 AB (08553—2352):

This system was first noted as binary by Riedel et al. (2010), who presented a preliminary fit to the partially
observed orbit in RECONS astrometry data. Ten additional years of data have revealed the orbital period to
be greater than the 21 years of coverage to date. The four SOAR observations show clear orbital motion from
2018.2-2020.8; these will allow us to constrain the incomplete photocentric orbit in future work. The consistent
AT of 2.4-2.6 mag indicate the companion has mass <0.2 Mg, but it is not substellar.

o LP 788-001 AB (09314—1718):

Winters et al. (2017) showed clear orbital motion for this system in the RECONS astrometry residuals, and
noted that the companion must contribute little flux in I band. The orbit has not wrapped after 8 years of
coverage, and our SOAR observation in I did not reveal the companion. Because the absolute magnitude of this
system sets the primary mass at ~0.1 M, the detection limits suggest that the companion is substellar.

e LP 848-050 AB (10427—2416):

This system exhibits an ~8 yr orbit in the RECONS astrometry with a large-amplitude photocentric perturbation
(see Figure 8 of Winters et al. 2017). Because the color and absolute magnitude of the system are consistent with
a ~0.1 Mg star, the two non-resolutions at SOAR suggest that the companion is either a very low luminosity
red or white dwarf, or a brown dwarf.

o L 327-121 AB (12336—4826):

The RECONS astrometric perturbation for this system shown in Winters et al. (2017) has continued in recent
data now spanning 10 yr. This is likely the reason this system has a poor fit in Gaia DR2 and no parallax given
in EDR3. The orbital period is ~9 yr, and a robust fit of this orbit will be possible in future work, enabling
dynamical masses to be determined by combining that fit with these three new SOAR resolutions. Winters et
al. (2017) noted an excessive mismatch between photometric and trigonometric distance, suggesting either that
the system is young or includes a third luminous component. The SOAR data indicate M; values of 8.43 and
8.83 for the two components, implying masses of 0.4-0.5 Mg and 0.3-0.4 Mg. The mass sum is consistent with
the orbital information available, indicating that a third luminous component is unlikely.

o LTT 6288 (15457—4330):

This system’s photocentric orbit was first described in Winters et al. (2017) and later updated in Vrijmoet et
al. (2020). The orbital period is 9.9 yr. The two resolutions at SOAR indicate the companion’s luminosity is
consistent with mass <0.2 Mg, with the primary roughly twice as massive. The reliable RECONS astrometric
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orbit and continuing SOAR observations will enable a precise dynamical mass determination for both components
in future work.

SCR 1546-5534 AB (15467—5535):

The orbit shown in Henry et al. (2018) has continued in now 9 years of RECONS astrometry, with preliminary
fits suggesting an orbital period of ~7 yr. The two SOAR resolutions reveal the companion to be somewhat
less massive than the primary star, with the secondary’s absolute I magnitude consistent with <0.1 My and the
primary’s consistent with roughly twice that mass. The secondary is more likely stellar than substellar, however,
as Henry et al. (2018) pointed out overluminosity evident in the ~30% difference between photometric (7 pc)
and trigonometric (10 pc) distances for this system.

LHS 3117 AB (15474—1054):

Zechmeister et al. (2009) noted a radial velocity trend in VLT+UVES (Ultraviolet and Visible Spectrometer)
data over ~500 d starting in 2004, and noted this system as SB1. This signal was confirmed by the re-analysis
of the same data by Tuomi et al. (2014). Our three new observations at SOAR over 2019.5-2020.2 reveal the
companion, and the Al of 0.8-1.0 mag indicates it is likely a low-mass star rather than a brown dwarf.

GJ 1212 AB (17137—0825):

This system has been noted as a spectroscopic binary by Reiners et al. (2012), Houdebine & Mullan (2015),
and Jeffers et al. (2018). No relative positions have been published before our SOAR observations. These three
resolutions show component B moving quickly around A from 2019.5-2020.2, sweeping through 191° in position
angle. Estimating the orbital semimajor axis to be 1-3 times the maximum displacement seen so far and assuming
mass sums of 0.5-0.7 My yields orbital periods of 0.97-5.9 yr. This target is thus high priority for continued
observations and orbit characterization on our SOAR program.

G 154-043 AB (18036—1859):

Revealed as binary via the astrometric perturbation shown in (Winters et al. 2017), 10 years of RECONS data
now show this system to have an orbital period of 812 yr. The two observations at SOAR indicate that this
binary has components with M; = 10.57 and 11.92, implying masses of 0.15 Mg and 0.12 M. The SOAR data
also show significant motion through 27°, so future work should allow for a refined orbit and reliable masses.

LTT 7434 AB (18460—2856):

As highlighted in Winters et al. (2017), this system has historically been challenging to interpret. The trigono-
metric distance is 1.4 times the photometric distance, implying two equal-mass components, yet the strong
astrometric perturbation is only possible with unequal-mass components. Additional RECONS astrometry data
acquired since Winters et al. (2017) continues the perturbation shown there, with the orbital period now esti-
mated to be more than 20 yr. At SOAR we have twice resolved a companion at 0735-0739 (2019.61-2020.77)
that is 1.4 mag fainter than the primary in I band; these are the first resolutions of this system. Bonfils et
al. (2013) noted that this system is an SB2 with variable line width, suggesting the possibility of a close third
component that could explain the excess flux. We will continue monitoring the long-term astrometry to complete
the orbit and to look for any additional perturbations from a potential third companion.

GJ 829 AB (21296+1739):

Delfosse et al. (1999) first reported this system to be binary and characterized its spectroscopic orbit. It was
reported as visually resolved by Oppenheimer et al. (2001) at Palomar and by Dieterich et al. (2012) with
HST/NICMOS, but in both cases no details of the resolutions are given. Our SOAR observations of the com-
panion at 25.0-36.7 mas separations are the most detailed to date. The close separation of this system presents
a challenge for HRCam+SAM to resolve consistently, but its 53-day orbital period (Delfosse et al. 1999) give
us ample future opportunities to attempt observations. When we have observed the entire orbit visually, fitting
that data will yield the orbital inclination, which we will combine with the Delfosse et al. (1999) spectroscopic
fit to obtain the individual component masses.
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e LHS 3739 BC (21588—3226, a.k.a. LHS 3738 AB):

The A-BC separation is 113", forming a hierarchical triple. Riedel et al. (2010) first announced the companion
to B based on RECONS astrometry and noted no significant overluminosity, indicating a much lower-mass
companion. Lurie et al. (2014) presented an updated photocentric orbit; the six additional years of RECONS
astrometry since then are consistent with that result. The BC pair has not been resolved at SOAR in two
attempts, with limits of AT = 2.3 at 0”15 and 3.4 at 1”70, implying a companion with mass lower than ~0.1 Mg.

LEHPM 1-4771 (22302—5345):

Although this binary’s orbital motion was shown in Winters et al. (2017) and its orbit fit updated in Vrijmoet et
al. (2020), the five SOAR observations reported here represent the first resolutions of the pair. The magnitude
difference of AI = 0.9-1.2 mag indicates a secondary somewhat less massive than the primary, consistent with
the assertion in Winters et al. (2017) that the secondary must contribute little flux in the R band. Once more of
the ~6 yr orbit is covered with SOAR observations, we will combine the photocentric fit with SOAR resolutions
to determine dynamical masses for the components.

LTT 9084 AB (22351—4218):

This system was first resolved by Karmakar et al. (2020) in July 2013, who found the binary to be separated by
398-405 mas with position angle 333°-334°, and brightness differences of <0.2 mag in each of JH K bands. Our
SOAR observations yield AI = 0.0, consistent with the near-infrared values. Thus, the components are likely of
similar mass. Our observations spanning 2019.5-2020.8 show the secondary moving from 428 mas to 401 mas,
to nearly the same separation as observed in 2013 by Karmakar et al. (2020). The position angles we observed,
however, were 17°-21° greater than the 2013 observations, increasing through 2019.5-2020.8. This displacement
suggests the companion passed through due north in the 6 yr between 2013 and 2019. Together, the available
data suggest the orbit is either highly inclined or highly eccentric. Although the orbit is likely several decades in
duration, continued observations over the next two years could rule out one of the above scenarios through any
variations in the secondary’s speed.
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Table 2. Results of observations through 2020 in the SOAR speckle program for 25 pc M dwarfs. All magnitude

differences are in the I band, except where the y band is noted in column 11.

VRIJMOET ET AL.

WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (170) Obs.
res. (year) Y/N) (") (deg) (mag) (") (mag) (mag) flags
(n* (2)" (3) (4) 5  (©° (M (8)" (9)? (10)? (1n°
00067—0706 Janl4  2019.8568 N 0.0768 2.3 2.9
2020.8342 N 0.0594 2.3 2.8
00098—4202 * 2019.6133 Y 0.0522  159.0 0.8
2019.8567 N 0.0525 2.5 3.9
2020.8341 Y 0.0959 115.7 1.0
2020.9270 Y 0.1089 117.4 0.9 q
00138—-0458 none 2019.8568 N 0.1145 1.6 2.5
2020.8342 N 0.1260 1.6 1.6
0016241952 * 2019.5397 N 0.0636 2.3 3.9
2019.8564 N 0.0543 2.7 4.1
2020.9241 Y 0.0312 44.8 1.0
00216—4606 none 2019.9523 N 0.0415 3.3 4.3
2020.9270 N 0.0415 2.8 5.2
00434—4118 none 2019.6133 N 0.0492 2.5 4.0
2019.8567 N 0.0470 2.8 4.3
2020.8341 N 0.0508 2.7 4.1
00482—0508 none 2019.9495 N 0.0415 2.4 4.8
2020.8342 N 0.0477 2.9 4.2
00585—2751 none 2019.5369 N 0.0463 2.7 4.2
2019.8568 N 0.0444 2.6 4.1
2020.9271 N 0.0415 2.9 5.2
01009—-0427 none 2019.5397 N 0.0562 2.5 4.2
2019.8568 N 0.0543 2.8 3.7
2020.8365 N 0.0463 2.6 4.0
01133—-5429 none 2020.1110 N 0.0643 2.3 3.3
2020.8365 N 0.0562 2.5 3.2
01287—-1458 * 2018.5621 Y 0.4115 338.7 2.6 q
2019.6134 Y 0.3686  326.5 2.6 q
2020.8344 Y 0.3241 307.8 2.6 q
2020.9271 Y 0.3205 306.2 2.7 q
01394—3936 none 2019.5370 N 0.0508 2.5 3.9
2020.8344 N 0.0500 2.5 3.9
01477—-4836 * 2019.5370 Y 0.5562  30.6 0.6 P
2019.8567 Y 0.5482 28.5 0.6 q
2020.8365 Y 0.5095 22.6 0.6 q
01511-0607 none 2019.5399 N 0.0670 2.3 3.7
2019.8568 N 0.0553 2.5 3.5
2020.8367 N 0.0508 2.7 4.0
01536—6654 Hok 2019.6132 N 0.0485 2.8 4.2
2019.8567 N 0.0508 2.6 4.2
2020.8368 Y 0.0914  245.5 3.0
02192—-3647 none 2019.5370 N 0.0437 2.4 3.8
2019.9498 N 0.0415 3.1 5.4
02275—1908 *x 2019.5398 Y 0.2249 196.2 1.8 q
2019.8593 Y 0.2068 201.4 1.8
2020.8345 Y 0.1179  232.4 1.8 q
02344—5306 * 2019.5344 Y 0.1504 312.0 0.1
2019.8567 Y 0.1357 330.9 0.1
2019.9470 Y 0.1314 337.1 0.1

Table 2 continued on next page
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.8344 Y 0.1122 59.2 0.1
2020.9243 Y 0.1149 68.2 0.1
02365—5928 none 2019.5345 N 0.0562 2.6 3.7
2019.8568 N 0.0553 2.5 3.5
2020.8368 N 0.0534 2.6 3.6
0253041653 none 2019.9496 N 0.0420 0.0 3.3
2020.8369 N 0.0516 2.8 3.9
03079—2813 none 2019.8593 N 0.0432 2.7 4.0
2020.8236 N 0.0432 2.7 4.4
03143—-2309 none 2019.8593 N 0.0485 2.6 4.1
2020.8236 N 0.0463 2.8 4.1
03195—3060 * 2019.6136 Y 0.5501 133.0 1.3 q
2019.8593 Y 0.5573 132.1 1.2 P
2020.9269 Y 0.5804 129.8 1.3
03347—-0451 * 2018.8409 Y 0.0977 218.5 0.9 q
2018.9747 Y 0.1034 211.6 1.0 q
2019.6136 Y 0.1365 188.3 0.9 q
2019.8571 Y 0.1430 181.1 0.9 q
2020.0182 Y 0.1401 176.6 0.9
2020.8236 Y 0.1140 151.5 0.9 q
2020.9243 Y 0.1077 146.0 0.9 q
03360—4431 none 2019.6135 N 0.0636 2.7 4.7
2019.8594 N 0.0477 2.8 4.1
2020.8368 N 0.0492 2.9 4.4
0342541232 none 2018.7317 N 0.0525 2.1 3.3
2019.8569 N 0.0759 2.2 3.9
03434—0934 none 2018.9724 N 0.0415 1.4 4.3
2020.8236 N 0.0534 2.4 3.3
0352741701 none 2019.8569 N 0.0553 2.5 3.7
2020.8369 N 0.0534 2.5 3.9
03543—1438 Hx 2019.8571 Y 0.1875 130.8 0.4
2020.8369 Y 0.1963 117.1 1.0
04093—-5322 none 2019.6136 N 0.0636 2.7 4.6
2020.1111 N 0.0463 2.4 3.8
04158—4602 ** 2019.6136 Y 0.7318 84.6 0.5 P
2019.8594 Y 0.7270 83.5 0.4 P
2020.1111 Y 0.7199 82.8 0.5 P
04176—4835 none 2019.6138 N 0.0716 2.6 4.0
2019.8594 N 0.0716 2.1 3.7
2020.9271 N 0.0573 2.2 3.0
04202—"7006 none 2019.9469 N 0.0415 2.2 4.3
2020.8286 N 0.1068 1.8 2.6
04242—-2357 none 2019.9500 N 0.0415 3.0 5.5
2020.8237 N 0.0450 2.7 4.2
04327—-3947 none 2019.8594 N 0.0470 2.8 4.1
2019.9500 N 0.0415 2.4 4.9
2020.0182 N 0.0415 2.8 4.3
2020.8369 N 0.0500 2.8 4.0
04353—1607 none 2019.8571 N 0.0670 2.3 3.6
2020.8237 N 0.0606 2.1 2.9
0448841003 * 2019.9498 Y 0.1075 302.5 0.4 q
2020.1111 Y 0.0885 316.7 0.5
2020.8346 Y 0.0784 91.3 0.3 q

Table 2 continued on next page

31



32

VRIJMOET ET AL.

Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.9244 Y 0.0824 103.0 0.3
04521—-1058 *k 2019.8571 Y 0.2393 51.3 2.6
2020.1111 Y 0.2390 42.3 2.9
2020.8237 Y 0.2443 31.9 2.8
04524—1649 none 2020.1110 N 0.0437 2.5 3.7
2020.9271 N 0.0415 2.7 5.7
0528240258 none 2019.9471 N 0.0415 2.7 4.9
2019.7914 N 0.0677 2.6 4.3
2019.8571 N 0.0534 2.5 3.9
2020.9272 N 0.0415 3.1 5.0
0532240949 none 2019.7914 N 0.0636 2.7 4.7
2019.8571 N 0.0463 2.5 3.7
2020.9272 N 0.0415 2.7 5.5
0533740157 none 2019.9471 N 0.0415 2.3 5.5
2020.8373 N 0.0470 2.7 4.3
05450—2137 Hx 2019.8595 Y 0.1665 24.2 0.2
2019.9497 Y 0.1632 22.8 0.1
2020.1112 Y 0.1568 20.5 0.0
2020.8370 Y 0.1113 5.0 0.2
0553242416 none 2019.8600 N 0.0492 2.5 4.1
2020.9274 N 0.0415 2.8 4.7
06049—3434 none 2019.8595 N 0.0477 2.5 4.4
2020.8370 N 0.0492 2.9 4.3
06109—4324 none 2020.1112 N 0.0450 2.6 4.0
2020.9271 N 0.0415 3.0 5.2
06112—0036 none 2019.8596 N 0.0955 2.1 3.1
2020.8373 N 0.0656 1.8 2.6
06241—-2655 Hx 2019.8595 Y 0.1618 29.7 0.5 q
2019.9524 Y 0.1569 26.1 0.4
2020.8372 Y 0.0559 294.3 0.3 q
2020.9244 Y 0.0538 267.3 0.5
06242—0017 ** 2019.8599 Y 0.0248 36.4 0.2
2019.9473 N 0.0458 2.0 4.0
2020.1115 Y 0.0453 108.2 0.4
2020.8373 Y 0.0954 133.4 0.0
2020.9246 Y 0.1014 136.4 0.0
06315—8812 * 2019.9469 Y 0.1195 330.8 0.6 q
2020.0183 Y 0.1331 330.5 0.8
2020.8346 Y 0.0757 348.2 0.0
06323—0943 * 2019.1993 Y 0.2043 61.9 0.3
2019.8596 Y 0.2180 62.0 0.4 q
2020.1115 Y 0.2254 62.0 0.4 q
2020.8372 Y 0.2372 62.2 0.4
06363—4000 ** 2019.8597 Y 0.1782 73.2 2.3 q
2019.9524 Y 0.1720 73.7 2.3 q
2020.8372 Y 0.0858 79.7 2.1
06396—2102 * 2019.8596 Y 0.5306  249.7 0.3
2020.1115 Y 0.5301 252.1 0.1 q
2020.8372 Y 0.5303 259.1 0.2 q
06437—2625 none 2019.8596 N 0.0477 2.4 3.8
2020.8372 N 0.0508 2.5 3.9
06597—5623 Hk 2019.8571 Y 0.2314 1424 0.0
2020.1111 Y 0.2326 1414 0.1
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.8374 Y 0.2321 137.5 0.0
07028—6103 * 2019.8571 Y 0.0753 26.5 0.0
2019.9475 Y 0.0776 16.2 0.4
2020.0182 Y 0.0928 358.1 0.2
2020.1111 Y 0.0635 7.4 0.3
2020.8374 Y 0.0644 12.7 0.5
2020.9246 Y 0.0509 348.5 0.0
2020.9957 Y 0.0601  344.7 0.0
07096—5704 Hx 2019.8571 N 0.0618 2.3 3.2
2020.1111 N 0.0562 2.3 3.4
2020.9957 Y 0.0351 70.9 0.1
07240—8015 none 2019.9469 N 0.0448 1.6 3.0
2020.1113 N 0.0875 1.7 2.8
2020.8347 N 0.1312 1.6 1.9
07282—1848 * 2019.8599 Y 0.5315 210.6 1.5 q
2020.1115 Y 0.5315 213.2 1.4 q
2020.8373 Y 0.5300 221.0 1.5 q
07334—2749 Hx 2019.8599 Y 0.4295 232.9 0.2
2020.1115 Y 0.4270 233.8 0.4
07402—4258 none 2019.8597 N 0.0492 2.7 3.9
2020.1116 N 0.0500 2.6 3.9
2020.9246 N 0.0415 2.7 5.0
07575—"7115 none 2019.8572 N 0.0562 2.6 4.0
2020.8346 N 0.0516 2.7 3.9
08030—8330 Hx 2019.8573 Y 0.1168 152.0 0.0
2019.9469 Y 0.1232 151.8 0.5
2020.1113 Y 0.1328 134.5 0.0
2020.8346 Y 0.1373 139.2 0.0
08083—7302 ** 2019.9528 Y 0.2798 343.5 0.5
2020.1113 Y 0.2778 343.9 0.5
0812040846 none 2019.9474 N 0.0415 2.4 4.8
08152—2344 none 2019.9528 N 0.0415 2.8 4.9
2020.9274 N 0.0415 2.8 5.4
0820240532 none 2019.9474 N 0.0415 3.0 5.2
08272—4459 Jod13  2019.8597 N 0.0470 2.6 4.1
2020.9274 N 0.0415 3.0 5.3
08373—2820 Hx 2019.9501 Y 0.1219 246.5 0.5 q
2020.1116 Y 0.1216  243.5 0.8 q
2020.8374 Y 0.1055 237.4 0.7
08380—5856 * 2019.8572 Y 0.4781  348.7 1.7 q
2020.1113 Y 0.4768 347.0 1.9 q
08386—2843 Hx 2019.9501 Y 0.0478 98.4 0.0
2020.1116 Y 0.0303 167.5 0.1
2020.8374 Y 0.0329 148.5 0.0
2020.9274 Y 0.0387 90.7 0.0
08528—-6609 Hx 2019.9475 Y 0.2944 46.1 0.3
2020.1113 Y 0.2924 45.9 0.1
08545—-0551 Hx 2019.9474 Y 0.1612 266.9 3.1 q
2020.0186 Y 0.1529 268.3 3.0
2020.1116 Y 0.1588 267.5 3.4
08553—2352 * 2018.2358 Y 0.4005 202.8 2.6 q
2019.9501 Y 0.3299 219.1 2.5 q
2020.1116 Y 0.3168 222.7 2.5 q
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.8374 Y 0.2912 231.0 2.4 q
09291—-2429 *k 2019.9502 Y 0.4203 199.1 0.1
2020.1117 Y 0.4184 199.0 0.0
2020.9958 Y 0.4190 197.2 0.1
09314—1718 none 2019.9502 N 0.0415 1.3 3.9
09428 —-6853 none 2019.9528 N 0.0415 2.7 4.2
09444—7359 * 2019.8573 Y 0.3322 2794 1.7 q
2019.9530 Y 0.3284 278.1 1.5
09449—1221 none 2019.9502 N 0.0415 2.0 5.1
09460—3254 none 2019.9502 N 0.0415 2.1 5.3
09507—1349 * 2019.9502 Y 0.3552 302.6 0.0 q
2020.1116 Y 0.3541 3024 0.1
09532—-0341 none 2019.9502 N 0.0415 1.8 4.8
09554—2716 none 2019.9502 N 0.0415 2.5 5.4
2020.9957 N 0.0470 2.4 4.3
09586—4626 none 2019.9474 N 0.0415 2.9 5.6
2020.9961 N 0.0485 2.7 4.5
10069—1247 Hx 2019.9503 Y 0.1801 202.5 0.0
2020.0184 Y 0.1883 205.7 0.0
10149—4709 none 2019.9528 N 0.0415 2.5 3.9
2020.2004 N 0.0415 2.6 4.9
10199—-4149 Hx 2019.9475 Y 0.1683 127.9 0.2
2020.0184 Y 0.1738 129.7 0.1
2020.9961 Y 0.2304 146.4 0.2
10427—2416 none 2018.2358 N 0.0600 0.0 1.8
2020.9958 N 0.0670 1.8 1.9
10482—1120 none 2019.9503 N 0.0415 2.5 4.8
10482—-3956 none 2019.9475 N 0.0415 2.3 4.6
10553—7356 none 2020.2006 N 0.0663 0.0 2.0
1056540701 none 2019.9530 N 0.0415 2.7 4.9
10581 —5525 Hx 2020.1117 Y 0.0949 9.9 0.0
2020.9961 Y 0.0740 52.1 0.3
11311—-1457 none 2019.9503 N 0.0415 2.0 4.9
11354—3232 none 2019.9529 N 0.0415 2.8 5.7
2019.5359 N 0.0414 2.7 4.1
12070—3501 Hx 2019.5359 Y 0.6156 45.9 2.0 P
2020.0186 Y 0.6310 45.7 1.9 P
1214340037 none 2020.0187 N 0.0415 2.7 4.6
12201—-1813 Hx 2019.5359 Y 0.1147  309.7 1.4
2020.0187 Y 0.0969 311.1 0.7
12206 —8226 * 2019.5386 Y 0.1175 69.5 2.3
2020.1117 Y 0.1939 54.6 2.3 q
2020.2006 Y 0.1981 53.0 2.2 q
12296—5560 none 2020.0188 N 0.0420 2.9 3.4
12300—3411 * 2019.5359 Y 0.1260 56.3 2.0 q
2020.0187 Y 0.1100 61.6 1.8 q
2020.1171 Y 0.1003 64.0 1.7 q
12336—4826 * 2019.5333 Y 0.1151 355.8 0.4 q
2020.0187 Y 0.1544 13.3 0.4
2020.1169 Y 0.1602 15.9 0.4 q
12360—4556 none 2019.5333 N 0.0477 2.7 4.2
12411—-3843 Hox 2019.5333 Y 0.2962 171.4 1.8
2020.1171 Y 0.2992 174.0 2.2
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
12440—-1615 Hx 2019.5359 Y 0.3377 88.9 0.0
2020.0187 Y 0.3301 85.2 0.0
12509—2121 none 2019.5359 N 0.0969 2.0 3.4
2020.1171 N 0.0875 2.0 2.7
13132—4131 ** 2019.5333 Y 0.0602 89.3 2.5
2020.0188 N 0.0415 3.3 4.3
2020.1168 N 0.0485 2.5 4.0
13168—1220 ** 2019.5359 Y 0.1690 232.1 1.6 q
2020.0188 Y 0.1771  241.7 1.4
13236—2555 none 2020.0188 N 0.0415 2.9 4.3
13248 —-0504 ** 2019.5360 Y 0.6043 280.6 0.6 P
2020.1173 Y 0.5978 279.4 0.4
13283—0222 A none 2018.3996 N 0.0415 2.5 4.2
2019.5360 N 0.0477 2.2 3.4
13283—0222 B none 2018.3996 N 0.0475 2.6 3.2
2019.5360 N 0.0553 2.1 3.2
13581—-3938 none 2019.5334 N 0.0636 2.3 4.1
2020.1172 N 0.0508 2.4 4.1
14041—-6615 Hx 2019.5386 Y 0.1709 32.1 3.9
2020.1118 N 0.0492 2.4 4.2
2020.2006 N 0.0415 2.4 5.5
1415540440 none 2019.5360 N 0.0606 2.3 3.1
2019.6127 N 0.0318 2.8 5.2
14206—7516 Hx 2019.5386 N 0.1920 1.7 2.5
2020.2006 Y 0.0877 154.0 0.0
14396—6050 none 2019.5333 N 0.0477 2.5 4.3
2020.1118 N 0.0437 2.8 4.4
14341—1824 *x 2020.1172 Y 0.1438 64.6 1.3
14343—1231 none 2019.5387 N 0.0477 2.6 4.4
2020.1174 N 0.0450 2.4 4.1
14441—-3427 none 2020.1172 N 0.0508 2.6 3.5
14542—2042 Hx 2020.1172 Y 0.3018 351.4 1.1 q
1454541606 Mar00 2019.5360 N 0.1312 2.0 2.0
15095—1547 Hx 2020.1174 Y 0.5795 199.0 2.1 P
15157—0725 ** 2019.5387 Y 0.5390 26.2 0.1
2020.1119 Y 0.5311 28.2 0.0
15194—-0743 none 2019.5387 N 0.0450 2.5 4.4
15248 —-4930 none 2019.5363 N 0.0485 2.2 3.7
2020.1118 N 0.0534 2.6 4.4
15309—-6801 Hx 2019.5386 Y 0.3354 304.4 1.2
2020.1119 Y 0.2936 305.1 1.2 q
1531942851 * 2019.6125 Y 0.0952 13.3 0.0
15421—-1928 none 2020.1119 N 0.0470 2.4 4.1
15457—4330 * 2019.5364 Y 0.2538 335.6 2.5 q
2020.1119 Y 0.2345 335.1 2.5 q
15467—5535 * 2019.5363 Y 0.2715 12.3 1.6 q
2020.1118 Y 0.2625 29.8 1.6
15474—1054 * 2019.5387 Y 0.2282 241.1 0.9 q
2020.1119 Y 0.1837 226.6 0.8 q
2020.2008 Y 0.1774  224.3 1.0 q
15476—2754 CD Hx 2019.5364 Y 0.1051 150.5 0.2
2020.1119 Y 0.0740 163.5 0.0
15578 —-5132 ** 2019.5363 Y 0.3261 331.9 0.8 q
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.1119 Y 0.3541 333.6 0.9 q
16019—3357 *k 2019.5364 Y 0.6939 61.6 0.2 P
2020.1119 Y 0.6714 61.3 0.0 P
16170—3137 Hx 2019.5365 Y 0.2691 46.2 0.2
2020.2007 Y 0.2790 37.1 0.0
16202—3734 A none 2019.5364 N 0.0534 2.1 3.2
16269—3813 none 2019.5364 N 0.0643 2.1 3.0
17129—-0508 none 2019.5361 N 0.0492 2.2 3.3
17137—0825 * 2019.5361 Y 0.0345 30.7 0.2
2019.6128 Y 0.0401 54.8 0.2
2020.2008 Y 0.0420 148.0 0.0
1717741140 none 2019.5361 N 0.0573 2.2 2.9
17282—0144 Hx 2019.5361 Y 0.0736 22.7 0.7
17298 —-2504 ** 2019.5338 Y 0.1435 203.3 0.5
2020.2008 Y 0.1659 201.5 0.6
17365—2515 Hx 2019.5338 Y 0.4553 258.1 1.4
2020.2008 Y 0.4543 257.3 1.8
17371—4419 Warl5 2019.5365 N 0.0437 2.3 4.2
2020.2008 N 0.0415 3.6 5.3
17462—3206 none 2019.6129 N 0.0636 2.5 4.3
2020.2008 N 0.0415 2.6 4.9
17466—5719 none 2020.2009 N 0.0415 2.2 5.6
18036—1859 * 2019.5338 Y 0.2190 351.9 1.3 q
2020.8228 Y 0.1648 325.3 1.4 q
18097—0220 none 2019.5361 N 0.0583 2.1 2.6
18099—-1027 ** 2019.5361 Y 0.7285 36.2 0.2 P
2020.8228 Y 0.7596 37.8 0.3 P
18268—-6543 none 2019.5365 N 0.0926 1.9 2.4
2020.8337 N 0.2250 1.6 1.6
1841142447 none 2019.6130 N 0.0543 2.4 3.6
18460—2856 * 2019.6130 Y 0.3485 182.3 1.4 q
2020.7694 Y 0.3949 1724 1.4 q
18483 —6856 Jaol4d  2020.8337 N 0.2864 1.8 1.8
1855540824 none 2019.5363 N 0.0457 2.2 3.3
18597—6327 ** 2019.5366 Y 0.0563 44.8 0.3
2020.7693 Y 0.0297 20.8 0.0
2020.8364 Y 0.0343 11.4 0.0
19127—-3615 none 2019.6130 N 0.0636 2.4 4.2
2020.8364 N 0.0508 2.7 3.7
19208—-4534 none 2019.6129 N 0.0492 2.5 4.5
1921642052 none 2019.6130 N 0.0573 2.6 3.4
19242—-0932 Hx 2019.5339 Y 0.4212 64.2 0.3
2020.8228 Y 0.4321 239.3 0.3 q
19310—7337 ** 2019.5366 Y 0.6704 175.4 3.5 q
2020.7693 Y 0.6299 169.1 3.5
19341—-5225 none 2019.5366 N 0.0534 2.4 3.7
2020.2009 N 0.0415 2.4 5.1
19420—-2104 none 2019.5391 N 0.0716 2.4 4.2
2020.8364 N 0.0516 2.7 3.9
19468 —0158 none 2019.5339 N 0.0543 2.4 3.9
2020.8228 N 0.0500 2.6 4.1
19517—3100 * 2019.5391 Y 0.1215 13.8 1.9 q
2019.8564 Y 0.1567 22.3 1.9 q
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
2020.8339 Y 0.1274 37.4 1.9
19544 —3148 *k 2019.5391 Y 0.1367 139.5 0.8 q
2019.8564 Y 0.1409 1474 0.9 q
2020.8339 Y 0.1555 167.4 0.8 q
20154—5646 ** 2019.5366 Y 0.7991 31.2 1.8 P
2020.8337 Y 0.8113 34.8 1.3 P
20253—2259 Hx 2019.5391 Y 0.9363 270.6 0.2
2020.8229 Y 0.9338 268.8 0.4 P
20492—-4012 * 2019.5392 Y 0.0938 20.2 1.1
2019.6135 Y 0.0976 20.9 1.2 q
2020.8284 N 0.0500 2.4 3.7
2020.9241 Y 0.0490 186.6 1.4
20556—1402 * 2018.4853 Y 0.0811 302.9 0.4 q
2018.8050 Y 0.0751 239.8 0.4
2019.5287 Y 0.1024 235.6 0.3
2019.8563 Y 0.1027 197.7 0.4 q
2020.8339 Y 0.0589 189.6 0.0
21011-4907 none 2019.5392 N 0.0636 2.6 4.1
2020.8337 N 0.0534 2.5 3.5
21142—-7633 ** 2019.6132 Y 0.7786 68.9 0.8 P
2020.8336 Y 0.8351 69.7 0.8
21176—4445 Hx 2019.5392 Y 0.7954 357.8 0.0
2020.7694 Y 0.7725 357.5 0.1
21202—-6739 none 2019.6132 N 0.0492 2.6 4.0
2020.8337 N 0.0508 3.0 4.3
21283—2219 none 2019.9495 N 0.0415 2.2 4.7
2020.8339 N 0.0508 2.7 4.2
2129641739 * 2019.5394 N 0.0525 2.8 4.3
2019.8563 Y 0.0367 96.4 0.0
2020.8228 Y 0.0307 209.0 0.2
2020.8228 Y 0.0250 193.9 0.0 y
21308—4043 none 2019.5392 N 0.0636 2.7 4.2
2019.8564 N 0.0477 2.4 4.0
2020.8339 N 0.0508 2.6 3.9
21344—4316 none 2019.8564 N 0.0643 2.2 3.3
21364—4401 none 2020.8339 N 0.0534 2.5 3.3
21387—-3340 none 2019.5392 N 0.0636 2.6 4.4
2019.8564 N 0.0470 2.8 4.2
2020.8339 N 0.0508 2.7 4.1
21390—2409 none 2019.5392 N 0.0741 2.1 3.5
2020.8339 N 0.0516 2.8 3.7
21497—-4139 * 2019.5392 Y 0.2030 320.5 1.6 q
2019.8564 Y 0.1934 317.1 1.6 q
2020.7694 Y 0.1540 303.6 1.5
2020.9242 Y 0.1495 302.6 1.7 q
21558—-3313 Hx 2019.5392 N 0.0708 2.4 4.0
2019.8564 Y 0.0490 207.8 1.1
2020.8339 Y 0.0420 229.1 0.8
21569—-0154 none 2020.8339 N 0.0716 2.0 2.7
21588—-3226 none 2019.5392 N 0.1260 1.2 1.8
2019.8566 N 0.0643 2.3 3.1
22025—-3705 none 2019.5392 N 0.0636 2.8 4.6
2019.8566 N 0.0444 2.6 4.2
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
22067—4458 * 2019.5392 Y 0.2757 147.3 2.7
2020.8339 Y 0.2990 144.5 2.7
22167—4801 Hx 2019.5367 Y 0.2036 240.3 2.7 q
2019.8566 Y 0.1962 236.7 2.6 q
2020.7694 Y 0.1576  224.8 2.6
22173—-3444 Hx 2019.5392 Y 0.0734 76.4 0.0
2019.6134 Y 0.0726 73.1 0.0
2019.8566 Y 0.0856 55.5 0.2
2019.9495 Y 0.0900 49.0 0.1
2020.8341 Y 0.1636 28.4 0.0
22231-1736 none 2019.5393 N 0.0685 2.3 3.9
22302—5345 * 2019.5367 Y 0.1620 80.1 1.1 q
2019.6135 Y 0.1530 79.5 1.1 q
2019.8566 Y 0.1457 76.2 1.1 q
2019.9495 Y 0.1424 74.3 1.2 q
2020.8337 Y 0.0668 41.9 0.9
22351—4218 Kar20 2019.5393 Y 0.4275  350.7 0.0
2019.8566 Y 0.4234 351.7 0.0
2020.8341 Y 0.4009 354.8 0.0
22388—-2037 BD none 2019.5393 N 0.0525 2.6 4.2
22388—-2037 AC none 2019.5393 N 0.0450 2.6 4.9
2019.8566 N 0.0404 2.7 4.0
22486—3109 none 2019.5393 N 0.0636 2.6 4.2
2019.8566 N 0.0470 3.0 4.2
23059—-3551 Warl5 2019.5393 N 0.0409 2.7 4.9
2020.8341 N 0.0399 2.8 4.3
23073—-0416 Hx 2019.5396 Y 0.4514 111.6 2.1 q
2019.8563 Y 0.4533 109.5 2.1 q
2020.8340 Y 0.4470 103.8 2.0 q
23083—1525 Hx 2019.5396 N 0.0500 2.8 4.3
2019.8566 N 0.0437 2.9 4.2
2020.9241 Y 0.0307 102.9 1.0
23107—1914 none 2020.8342 N 0.0508 2.7 4.0
2020.9242 N 0.0415 3.2 5.0
23120—1702 ** 2019.5396 Y 0.4874 34.0 0.0
2019.8566 Y 0.4960 35.1 0.0
2020.8342 Y 0.5199 38.1 0.0
23242—1746 ** 2019.9495 Y 0.0689 359.3 0.0
2020.8342 Y 0.1177 19.3 0.0
2020.9242 Y 0.1195 20.4 0.1 q
23254—6740 ** 2019.6132 Y 0.1376 78.3 0.0
2019.8567 Y 0.1274 84.6 0.0
2019.9495 Y 0.1269 86.6 0.0
2020.7694 Y 0.1118 103.0 0.0
23302—-2023 none 2018.9746 N 0.0415 2.7 5.3
2020.9242 N 0.0415 2.8 5.4
23369—3629 none 2019.5367 N 0.0508 2.5 3.4
2020.8341 N 0.0525 2.6 3.7
23486—2740 none 2019.5367 N 0.0477 2.4 3.6
2020.8342 N 0.0534 2.7 3.7
23524—1441 Hx 2019.5367 Y 0.3780 252.9 1.9 q
2019.9495 Y 0.3781  250.3 1.9 q
2020.8342 Y 0.3801 2454 1.8

Table 2 continued on next page
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Table 2 (continued)

‘WDS First Date obs.  Resol. p 0 Am Pmin Am (0715)  Am (1”70) Obs.
res. (year) (Y/N) @) (deg) (mag) @) (mag) (mag) flags
(1)* 2" (3) (4) (5)° 6)° (N° 8)! 9)? (10)? (1n)°
23548—-0957 Hx 2019.5396 Y 0.2525 249.5 2.6 q
2019.8590 Y 0.2636 251.1 2.5 q
2020.8342 Y 0.2842 2624 2.6 q
23557—0609 Hx 2019.5396 Y 0.3082 59.3 4.3
2019.8590 Y 0.2890 53.0 4.6
2020.8342 Y 0.2434 40.1 4.2
2358540740 Hx 2018.5617 Y 0.1808 171.8 2.4
2019.5397 Y 0.2501 176.5 2.3 q
2020.8340 Y 0.2211 181.8 2.6 q

References— Janl4 = Janson et al. (2014), Jaol4d = Jao et al. (2014), Jod13 = Jédar et al. (2013), Kar20 = Karmakar et al.
(2020), Mar00 = Martin et al. (2000), Warl5 = Ward-Duong et al. (2015)

@Column 1 — For resolved systems not already noted in the WDS catalog (Mason et al. 2001), the WDS code given is the
anticipated code for the future entry.

b Column 2 — This column gives a single or double asterisk (* or **) for each new resolution, depending on previous status of the
target’s multiplicity. A single asterisk (*) indicates a new resolution of a system already known in the literature to be a multiple,
but which has never previously been resolved. A double asterisk (**) marks a new resolution of a system that was previously
a multiple candidate at best, with its multiplicity not established in the literature; these are new multiples. Systems previously
resolved by others have their first resolution reference listed. Systems not resolved here and never resolved previously are noted
with “none” in this column.

€ Columns 5-7 — For observations that resolved a companion, these columns give the separation (p), position angle (@), and
magnitude difference (Am) between components.

dColumns 8-10 — For observations with no detected companion, these columns provide limits: the minimum separation distin-
guishable (pmin) for pairs with Am < 1 mag, the magnitude difference limit at 0’15 from the primary source, and the magnitude
difference limit at 1”0 from the source.

€ Column 11 — This column contains flags related to each observation: q = quadrant has been determined, p = Am determined
photometrically from average image, : = noisy data, y = magnitude difference in y band (all others in I band).

Table 3. Summary of SOAR speckle results for each of the
three sample subsets, as well as the targets meeting the formal
multiplicity criteria in DR2 (Vrijmoet et al. 2020) and the full

sample.
Subset Targets Pairs Percent  Targets not
name observed resolved resolved observed

) @) (3) (@) (5)
0.9m PB 120 59 49% 3
Literature multiples 188 140 74% 1
DR2 suspects 249 188 76% 3
2+ DR2 criteria 217 176 81% 2
Full sample® 333 211 63% 5

@ Numbers are not the sums of the four categories above because of over-
laps in samples, as shown in the Venn diagram of Figure 1.
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